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Abstract:  Finding the spectral features of color sample sets is a main issue of 

colorimetry. It is widespread to apply Principal Component Analysis in 

these researches. Several studies were written about the reconstruction of 

samples with known spectra using principal components, and some works 

dealt with approximate reconstruction from tristimulus values. Our study 

examines how spectral reconstruction done with genetic optimization 

works in case of different sample sets. We have taken only the tristimulus 

values of the color samples given.  
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1. Introduction 

It is a basic thesis of colorimetry that any color stimulus can unequivocally be given 

by three numbers. These numbers can be the CIE ZYX ,,  tristimulus values or the 

coordinates of any other suitable color space (
****** ,,;,,;,, vuLbaLyxY etc.). However, 

the description of selfluminous objects (light sources) and surfaces (secondary light 

sources) is often given with spectral features, in other words with spectra. This type of 

description provides much more information about the observed object, it needs, 

therefore, more than three parameters. The researchers in colorimetry started examining 

how they can determine or give approximately the reflection spectra of surfaces with 

only a few numbers. Principal Component Analysis (PCA), which is based on elements 

of mathematical statistics and linear algebra, has appeared to be an especially strong and 

interesting tool. 

Several studies deal with the usage of Principal Component Analysis in colorimetry, 

therefore its mathematical presentation is not the subject of the present article. 

Publications [1]-[7] provide a general view how it works. In order to apply this method 

effectively, it is necessary to have a set with a large number of known spectra. Principal  
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Component Analysis produces the eigenvectors belonging to the sample set. The 

linear combination of these eigenvectors helps to reconstruct the spectrum. The above 

mentioned studies present reconstruction of samples that have known and measured 

spectra. The question is whether it is possible to say anything about the spectrum of 

color samples that have unknown reflectance functions if we only know their tristimulus 

values ZYX ,, . In some of the studies focusing on this problem [8], [9], the spectral 

reconstruction is done with an algorithm using pseudoinvers matrix operations. 

However, Principal Component Analysis or weighed Principal Component Analysis has 

been used in other studies. Corresponding to the tristimulus values, the three 

eigenvectors, whose eigenvalues are the greatest ones, are enough to get the same 

ZYX ,, values as the result of reconstruction [10], [11]. More accurate results can be 

reached with more components, but they lead to undetermined equation systems, as the 

tristimulus values can be given in many ways from more than three components. 

Because of this critical statement, three vectors have been considered to be satisfactory 

in most cases.  

Publication [12] describes our method that deals with this problem. We used the first 

five eigenvectors instead of the first three vectors and the features of the reflection 

functions of real color samples for generic optimization. It was considered that the 

reflection functions of the real samples are smooth, without strong oscillation and they 

are non-negative. This method provides a much more accurate reconstruction than the 

earlier ones. (Figure 1) The set of 2 832 textile samples with known reflectance 

functions were used. Furtheremore, 148 flower samples, 565 paint samples and 8 533 

human skin samples were applied. Figure 2 shows these sample sets. The formalism of 

optimization is to be shown in brief. More details can be read in publication [12]. 

 

Figure 1. Reconstruction with three and with five eigenvectors 
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Figure 2. The textile, flower, paints, skin samples sets in CIE xy color space 

2. The formalism of optimization 

During calculation, we work with spectra (reflectance functions) whose resolution is 

given, therefore, we use finite-dimensional vectors instead of continuous functions. Let 

N  denote the dimension number of these vectors. For example, if we think of a 

spectrum with a range of 400 nm - 700 nm and with an equidistant-wavelength step of 

at 10 nm, 31=N . 

Let us denote the eigenvalues of the PCA method arranged in decreasing order by 

021 ≥≥ Nτττ L , the eigenvectors relating to the eigenvalues by Nvvv ,,, 21 L , and the 

mean vector by m . The linear combination of M eigenvectors and the principal 

components Mccc ,,, 21 L  provides the following spectrum. 

 ( ) ∑ +⋅=
=

M

i
iiM mvccccf

1
21 ,,, L , (1) 

( )Mcccf ,,, 21 L  is also an N -dimensional vector. 

Having M  fixed, variables Mccc ,,, 21 L  determine the spectrum of the reconstructed 

f according to equation (1). As a next step, we create a function that measures the 

difference between this type of spectrum and the ideal spectrum. The difference is small 

for smooth and non-negative metamers, and it is greater and greater, if the tristimulus 

values deviate from the stipulated ones or if the function oscillates strongly or it takes 

up negative values. It is easy to calculate the tristimulus values of the spectrum by the 

application of color-matching functions. 

 ∑ ⋅=∑ ⋅⋅=∑ ⋅⋅=
=

⋅
==

N

i
iii

N

i
iii

N

i
iii zSfZySfYxSfX

1
0

1
0

1
0 ,,  (2) 

In Eq. 2, iii zyx ,, denote the discrete versions of the CIE color-matching functions 

which have the same resolution as that of the spectra, iS .is the discrete spectral power 

distribution of the illuminant. Obviously, the values of 000 ,, ZYX  depend on the 

coefficients ic , but we do not emphasize this dependence for the sake of briefness. 
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We can calculate the squared sum of the differences to show how much the values 

000 ,, ZYX  deviate from the predefined values ZYX ,, . 

 ( ) ( ) ( ) ( )20
2

0
2

0210 ,,, ZZYYXXcccd M −+−+−=L  (3) 

This 0d  value is non-negative and it is equal to 0 when a metamer complies with the 

definition. If 3=M , the equation system of the metamer has a single solution. A lot of 

earlier studies which used PCA ended with giving this solution. If 3>M , it has an 

infinite number of solutions, and we can choose the most realistic one by the use of 

constraints on negativity and strong oscillation. 

We can describe the negativity of the function by the integral of the negative and the 

positive part, or with the ratio of their sums in the discrete case. Denote: 

 ( )0,max ii ff =+  (4) 

 ( )0,min ii ff =−  (5) 

 ∑
=

++ =
N

i

ifF

1

 (6) 

 ∑
=

−− −=
N

i

ifF

1

 (7) 

Definitions (4) and (5) resemble the terms of lower and upper covering functions used 

in analysis. 

The penalty term on negativity is: 

 ( ) nn W
FF

F
P ⋅

+
=

−+

−

 (8) 

nW  is the weight factor which is used to set the relative weight of this term within the 

optimization function. It is obvious that 0=nP  if the function has only non-negative 

values and 1=nW , and the more negative parts, f contains the greater positive values 

nP  has got. It is 1 in extreme cases. 

We define the oscillation of the function by the squared sum of the deviation between 

the neighboring terms: 

 ( )∑
−

=
+ −=

1

1

2
1

N

i

ii ffV  (9) 

The penalty term on oscillation is 
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( ) vv W
N

V
P ⋅

−
=

1
 (10) 

The cost function whose minimum is assumed to determine the metamer with the best 

qualitative features is the following. 

 ( ) vnM PPdcccd ++= 021 ,,, L  (11) 

We can get 0d  from (3), nP from (8) and vP  from (10). The weights nW  and vW  

show the importance of one or the other penalty terms. According to the pre-calculation 

we have already made, the useful values are 1,100 1 == WWn . A little change in them 

will not influence the final result. 

All in all, d is a non-linear function with M variables, whose minimum corresponds 

to the best function for us, in other words, vector ( )Mccc ,,, 21 L  which gives the 

location of the extreme values, contains the optimal weight of the eigenvectors used in 

the reconstruction.  

In order to find the minimum point of function d , which has been given in equation 

(11) above, we use our own genetic optimization program. The genetic algorithm was 

chosen because d has a lot of local minima (mainly because of the oscillation term) and 

the gradient-based methods generally cannot find the global minimum in these cases.  

Our genetic algorithm uses the standard genetic operators, e.g. mutation and crossing, 

and in order to accelerate the search for local maxima, it uses hill-climbing steps. We 

had already applied this code to solve more industrial optimization problems [13]. 

3. Values describing the accuracy of the reconstruction 

We can describe the accuracy of the reconstruction by several measuring numbers in a 

quantitative way. We can measure the color difference between the examined sample 

and the reconstructed sample, the sepctral deviation and accuracy between the original 

and the reconstructed reflection funtion. 

The color difference can be given as it follows. As the first step, the tristimulus values 

ZYX ,, of the samples have to be transformed into values 
***

,, baL  (12), where 

nnn ZYX ,,  are the tristimulus values of the reference white tristimulus values under a 

given illuminant.  
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In case of all the used samples, the condition 

3

29

6








>t is met. The nnn ZYX ,,  values 

of the reference white tristimulus under the illuminant with ( )λS  spectral power 

distribution are given by equation (13). 

 ( ) ( ) ( ) ( ) λλλλλλ ωϕωϕ dzSkZYdxSkX nnn ⋅⋅==⋅⋅= ∫∫
700

400

700

400

,100,  (13) 

 

( ) ( )∫ ⋅

=
700

400

100

λλλ ω

ϕ

dyS

k  (14) 

The normalisation coefficient is denoted by ϕk  and ( ) ( ) ( )λλλ ωωω zyx ,,  are the CIE 

color matching functions. The values of the comparable color samples are *
1

*
1

*
1 ,, baL , 

and *
2

*
2

*
2 ,, baL . Knowing these, the CIE Lab *

abE∆ color difference can be determined 

(15). 

 ( ) ( ) ( )2*
1

*
2

2*
1

*
2

2*
1

*
2

* bbaaLLEab −+−+−=∆  (15) 

If 0* =∆ abE , the test samples are the same. If 1* =∆ abE , it gives the just perceptible 

difference under a given illuminant. 

Two different values are given for the spectral accuracy by the publications. One of 

them is a numerical value, GFC  (goodness of fit coefficient) (16). 
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λϕλϕ
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 (16) 

( )iλϕ  denotes the sample reflection function at wavelength iλ . ( )ir λϕ  denotes the 

reconstructed spectrum at iλ . If 1=GFC , the reconstructed function is perfectly 

identical with the original one. Therefore the closer GFC gets to 1, the more accurate 

the spectral reconstruction is. The formula in (16) corresponds to the cosine value of the 

angle of two abstract vectors. 

The other accuracy specifying value is RMS (root mean square), which gives the 

reconstruction error according to the differences between the original and the 

reconstructed spectra (17). 
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 ( ) ( )( )∑
=

−⋅=
31

1

2
ii

31

1

i

rRMS λϕλϕ  (17) 

The notations in equation (17) are the same as the notations in equation (16). The 

smaller the value is, the smaller the spectral error is and the greater the reconstruction 

accuracy is. 

4. Reconstruction in case of textile samples 

During calculation, we reconstructed some randomly-chosen textile samples with 

the above mentioned process and wanted to find the ideal coefficients �� . During 

optimisation, we presumed the equienergetic ���	� illuminant. Figure 3 shows the 

reconstruction of randomly chosen samples with five eigenvectors.  

 

 

Figure 3. Reconstruction of textile samples. The black line denotes the reconstructed 

spectrum, the coloured line denotes the original spectrum 

The following table (Table 1) shows the mean values of Δ�	

∗ , ��, ���. 

Table 1. The mean values ��	

∗ , ��, ��� of the reconstruction done by genetic 

optimisation. 

RMS GFC ����
∗  

0.0300 0.9926 0.0100 
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5. Reconstruction with different sample sets 

Let us examine what the coefficients and the spectra are if we use other samples than 

textiles. We suppose that different spectra belong to the same �, �, � tristimulus values 

in cases of other materials. The whole analysis is done for three other sample sets, 

namely, for 148 flowers, 565 paint samples and 8533 human skin samples, and the 

principal components �� are determined with optimisation again.  

However, the eigenvectors of PCA and the coefficients �� are different in case of 

different sample sets, it is interesting to know, how big the difference is between the 

reconstructed spectra belonging to the same tristimulus values. Therefore, the 

reconstruction is done for randomly-chosen tristimulus values in case of different 

training sample sets. The reconstruction is done for the above mentioned sample sets, 

the textile samples, the flowers, the paint samples and the skin samples, with their own 

eigenvectors using our genetic oprimisation algorythm and presuming the illuminant 

���	�. Figure 4 shows the reconstructed spectra of the different training sample sets 

belonging to the same tristimulus values �, �, �. 

  

 

Figure 4. The reconstructed spectra belonging to given tristimulus values in case of 

different training sample sets 

Figure 4 depicts clearly that different spectra belong to the same tristimulus values 

depending on the training sample sets. The reconstructed spectra are less oscillating for 

textile and paint samples than for flowers or human skin samples, which corresponds to 

the features of the samples. The reconstructed functions of the textile and paint samples 

resemble each other the most, however, they are not identical at all. Table 2 denotes the 
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values of ��, ��� which describe the reconstruction numerically, compared to the 

reconstructed spectrum. With other words, the basis of comparison is always the textile 

spectrum. The values Δ�	

∗  are not calculated as only the shapes of the reconstructed 

reflectance functions are compared. 

Table 2. The mean values of ��, ��� corresponding to the same tristimulus 

values fro different training sets 

textile-flower textile-paint textile-skin 

RMS GFC RMS GFC RMS GFC 

0.0522 0.9821 0.0325 0.9963 0.0556 0.9847 

The content of Table 2 depicts that different spectra belongs to the same tristimulus 

values when we use textile, flower, paint or skin samples. The differences are smaller in 

case of textile and paint samples than of other sample set pairs. This statement is proved 

for the first five eigenvectors and the mean vectors of each sample set. (Figure 5) 

 

 

 

Figure 5. The mean vector and the first five eigenvectors for different sample sets 



 Zs. Sávoli et al. – Acta Technica Jaurinensis, Vol. 9, No. 1, pp. 54-64, 2016 

 

63 
 

Figure 5 depicts that the eigenvectors of the textile and the paint samples differ from 

each other the least, on the other hand, the eigenvectors of the other two sample sets 

show greater differences. Therefore, different spectra belong to the same tristimulus 

values �, �, � for different sample sets.  

Conclusion 

Our study shows a genetic optimisation process that helps us to reconstrutct the 

reflectance funtion of colorful samples on the basis of their tristimulus values. During 

reconstruction we use the first five eigenvectors provided by the PCA together with 

restrictive terms for the shape of the reflectance functions of real samples. It gives the 

opportunity to choose those metamers from their infinite set in such a way that the 

reflectance function corresponds with the reflectance functions of the real samples. 

All in all, our method makes it easy to reconstruct a spectrum for the tristimulus 

values of any colour sample with unknown spectrum. Even, we can tell what the 

spectrum looks like when the unknown sample is textile, flower, paint or skin. The 

method can be refined with the use of other sample sets. 
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