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Abstract: By using scalar and vector potentials, Maxwell’s equations can be transformed
into partial differential equations. Generally, the partial differential equations
can be solved by numerical methods. One of these numerical methods is
the finite element method, which is based on the weak formulation of the
partial differential equations. The basis of numerical techniques is to reduce
the partial differential equations to algebraic ones whose solution gives an
approximation of the unknown potentials and electromagnetic field quantities.
This reduction can be done by discretizing the partial differential equations in
time if necessary and in space. The potential functions, the approximation
method and the generated mesh distinguish the numerical field solvers. This
paper summarize the finite element method as a CAD technique in electrical
engineering to obtain the electromagnetic field quantities in the case of static
magnetic field and eddy current field problems. Here, we show how to
discretize the analyzed domain with finite elements, how to approximate
potential functions with nodal and vector shape functions and how to build up
the system of equations, which solution obtain the unknown potentials.

Keywords: Maxwell’s equations, weak formulation, finite element method

1. Introduction

This paper is based on the book [1].

The Finite Element Method (FEM) is the most popular and the most flexible numerical
technique to determine the approximate solution of the partial differential equations in
engineering. For example, commercially available FEM software package is COMSOL
Multiphysics, which is able to solve one, two and three-dimensional problems. A free
mesh generator with a built-in CAD engine and post-processor is Gmsh.

The main steps of simulation with FEM are illustrated in Fig. 1. Firstly, in the model
specification phase, the model of the real life problem, which simulation require electro-
magnetic field calculations must be set up, i.e. we have to find out the partial differential

347



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

Figure 1. Steps of simulation by FEM.

equations, which must be solved with prescribed boundary and continuity conditions. We
have to find out, whether it is a linear or a nonlinear problem and how the characteristics
look like. After selecting potentials, the weak formulation of these partial differential equa-
tions must be worked out as well. It is depending on the problem, of course, but the chosen
mathematical model of the arrangement should be adequate to calculate electromagnetic
field quantities in the given accuracy. The geometry of the problem must be defined by a
CAD software tool, e.g. by using a user friendly interface, see e.g. Fig. 2.

The next step is the preprocessing task. Here we have to give the values of different
parameters, such as the material properties, i.e. the constitutive relations, the excitation
signal and the others. The geometry can be simplified according to symmetries or axial
symmetries.

The geometry of the problem must be discretized by a FEM mesh. The fundamental idea
of FEM is to divide the problem region to be analyzed into smaller finite elements with
given shape. A finite element can be e.g. triangle or quadrangle in 2D, e.g. tetrahedron or
hexahedra in 3D. A triangle has three vertices 1, 2 and 3 numbered counter-clockwise and
has 3 edges. The quadrangle element has 4 nodes and 4 edges. A tetrahedral element has 4
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Figure 2. COMSOL Multiphysics, a CAD environment to solve electromagnetic field
problems.

vertices and 6 edges and a hexahedral element has 8 nodes and 12 edges.

There are some simple rules, how to generate a mesh. Neither overlapping nor holes
are allowed in the generated finite element mesh. If material interface are included in
the problem region, the configuration of mesh must be adapted to these boundaries, i.e.
interfaces coincide with finite element interfaces.

FEM mesh, as two illustrations, generated by COMSOL Multiphysics can be seen in
Fig. 3 and in Fig. 4. The first 2D illustration (Fig. 3) shows the mesh of a horseshoe-
shaped permanent magnet. The two ends are pre-magnetized in different directions. The
second illustration (Fig. 4) presents a model of a micro-scale square inductor, used for LC
bandpass filters in microelectromechanical systems. The model geometry consists of the
spiral-shaped inductor and the air surrounding it (the mesh in air is not shown). The outer
dimensions of the model geometry are around 0.3 mm. These illustrations are cited from
the Model Documentation of COMSOL Multiphysics.

The next step in FEM simulations is solving the problem. The FEM equations, based
on the weak formulations, must be set up in the level of one finite element, then these
equations must be assembled through the FEM mesh. Assembling means that the global
system of equations is built up, which solution is the approximation of the introduced
potential. The obtained global system of algebraic equations is linear, or nonlinear but
linearized, depending on the medium to be analyzed. Then this global system of equations
must be solved by a solver. The computation may contain iteration if the constitutive
equations are nonlinear. This is the situation when simulating ferromagnetic materials with
nonlinear characteristics. Iteration means that the system of equations must be set up and
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Figure 3. COMSOL model of a permanent magnet, geometry is meshed by triangles.

Figure 4. COMSOL model of a micro-scale square inductor, geometry is discretized by
tetrahedral shape finite elements.

Figure 5. COMSOL solution of the static magnetic field generated by a permanent magnet.
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Figure 6. Electric potential in the device and magnetic flux lines around the device, the
problem has been solved by COMSOL.

must be solved step by step until convergence is reached. If the problem is time dependent,
then the solution must be worked out at every discrete time instant.

The result of computations is the approximated potential value in the FEM mesh. Any
electromagnetic field quantity (e.g. magnetic field intensity, or magnetic flux density,
etc.) can be calculated by using the potentials at the postprocessing stage. Capacitance,
inductance, energy, force and other quantities can also be calculated. The postprocessing
give a chance to modify the geometry, the material parameters or the FEM mesh to get
more accurate result. The COMSOL Multiphysics has been used to show two examples
about postprocessing. The pattern of the magnetic field around the permanent magnet
is well known through experiments (see Fig. 5). Figure 6 shows the electric potential in
the inductor and the magnetic flux lines. The thickness of the flow lines represents the
magnitude of the magnetic flux.

2. Approximating potentials with shape functions

The potential function can be scalar valued (e.g. the magnetic scalar potential Φ, or the
electric scalar potential V ), or vector valued (e.g. the current vector potential T , or the
magnetic vector potential A).

The scalar potential functions can be approximated by so-called nodal shape functions
and the vector potential functions can be approximated by either nodal or so-called vector
shape functions, also called edge shape functions. Generally, a shape function is a simple
continuous polynomial function defined in a finite element and it is depending on the type
of the used finite element.

Shape functions have the following general properties:
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(i) Each shape function is defined in the entire problem region;

(ii) Each scalar shape function corresponds to just one nodal point and each vector shape
function corresponds to just one edge;

(iii) Each scalar shape function is nonzero over just those finite elements that contain its
nodal point and equals to zero over all other elements. Each vector shape function in
nonzero over just those finite elements that contain its edge and equals to zero over
all other elements;

(iv) The scalar shape function has a value unity at its nodal point and zero at all other
nodal points. The line integral of a vector shape function is equal to one along its
edge and the line integral of it is equal to zero along the other edges;

(v) The shape functions are linearly independent, i.e. no shape function equals a linear
combination of the other shape functions.

The accuracy of solution obtained by FEM can be increased in three ways. The first one
is increasing the number of finite elements, i.e. decreasing the element size. It is called
h-FEM. The second way is to increase the degree of polynomials building up a shape
function (e.g. using Lagrange or Legendre interpolation functions). This is the so-called
p-FEM. The mixture of these methods results in hp-FEM. Potentials approximated by
h-version or p-version are assigned in the indices of the potentials.

2.1. Nodal finite elements

Scalar potential functions can be represented by a linear combination of shape functions
associated with nodes of the finite element mesh. Within a finite element, a scalar potential
function Φ = Φ(r,t) is approximated by

Φ '
m∑
i=1

NiΦi, (1)

whereNi = Ni(r) and Φi = Φi(t) are the nodal shape functions and the value of potential
function corresponding to the ith node, respectively. The number of degrees of freedom is
m = 2 in 1D problems, m = 3 in a 2D problem using triangular FEM mesh and m = 4 in
a 3D arrangement meshed by tetrahedral elements and the shape functions are linear. The
nodal shape functions can be defined by the relation

Ni =

{
1, at the node i,
0, at other nodes. (2)

(i) In 1D, the linear shape functions can be build up by

N1 =
x2 − x
x2 − x1

, and N2 =
x− x1
x2 − x1

, (3)
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where x1 and x2 are the coordinates of the boundaries of one finite element. The linear
shape functions are plotted in Fig. 7. It is easy to control the equation (2).

Figure 7. The 1D linear shape functions N1(x) and N2(x).

If the values of the potential are known in the two boundary points x1 and x2, then the
potential can be determined easily inside the finite element x1 ≤ x ≤ x2 as (see Fig. 8)

Φ = N1 Φ1 +N2 Φ2 =
x2 − x
x2 − x1

Φ1 +
x− x1
x2 − x1

Φ2. (4)

Of course, it is valid in the other finite elements as well, e.g. if x2 ≤ x ≤ x3, then

Φ = N1 Φ2 +N2 Φ3 =
x3 − x
x3 − x2

Φ2 +
x− x2
x3 − x2

Φ3, (5)

and N1, N2 are shifted to the second finite element.

The scalar potential is continuous in the whole 1D region. It is noted here that the
accuracy of approximation can be increased by decreasing the length of the elements,

Figure 8. Known potential values are approximated by linear functions.
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especially where the rate of change of the solution is large, e.g. between x3 and x4 in
Fig. 8. Here, the mesh can be very fine and higher order approximation can results in better
solution.

One way to build up higher order shape functions is using Lagrange interpolation
functions, defined by the formula

Ni(x) =

m∏
j=1, j 6=i

x− xj
xi − xj

. (6)

The order is m− 1 and Ni(x) is equal to one in the node i and equal to zero in all the other
nodes. Here, second and third order approximations are shown.

The second order approximation can be defined by 3 quadratic shape functions (i.e.
m = 3 in (1), see Fig. 9),

N1 =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
, (7)

N2 =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
, (8)

N3 =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
, (9)

and the new point x3 is placed in the center of the element,

x3 =
x1 + x2

2
. (10)

The third order approximation can be defined by 4 cubic shape functions (m = 4 in (1),
see Fig. 10),

N1 =
(x− x2)(x− x3)(x− x4)

(x1 − x2)(x1 − x3)(x1 − x4)
, (11)

Figure 9. The 1D quadratic shape functions N1(x), N2(x) and N3(x).
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N2 =
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
, (12)

N3 =
(x− x1)(x− x2)(x− x4)

(x3 − x1)(x3 − x2)(x3 − x4)
, (13)

N4 =
(x− x1)(x− x2)(x− x3)

(x4 − x1)(x4 − x2)(x4 − x3)
, (14)

and the new points x3 and x4 are placed inside the element as

x3 =
1(x1 + x2)

3
, x4 =

2(x1 + x2)

3
. (15)

Figure 10. The 1D cubic shape functions N1(x), N2(x), N3(x) and N4(x).

Figure 11. Known potential values are approximated by quadratic functions.

With this technique, the interpolation functions of any order can be defined and the
equation (2) can be controlled.

Figure 11 shows the higher order approximation of the potential plotted in Fig. 8. This
illustration shows the applicability of higher order functions.
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(ii) 2D linear shape functions can be built up as follows when using a finite element
mesh with triangular finite elements. Linear basis functions can be introduced by using the
so-called barycentric coordinate system in a triangle as follows. The area of a triangle is
denoted by ∆ and it can be calculated as

∆ =
1

2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣ , (16)

where (x1,y1), (x2,y2) and (x3,y3) are the coordinates of the three nodes of the triangle in
the global coordinate system building an anticlockwise sequence. The area functions (see
Fig. 12) of a given point inside the triangle with coordinates (x,y) can be calculated as

∆1 =
1

2

∣∣∣∣∣∣
1 x y
1 x2 y2
1 x3 y3

∣∣∣∣∣∣,∆2 =
1

2

∣∣∣∣∣∣
1 x1 y1
1 x y
1 x3 y3

∣∣∣∣∣∣,∆3 =
1

2

∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x y

∣∣∣∣∣∣, (17)

i.e. ∆1 = ∆1(x,y), ∆2 = ∆2(x,y) and ∆3 = ∆3(x,y) are depending on the coordinates
x and y.

The barycentric coordinates Li = Li(x,y) can be defined by the above area functions as

Li =
∆i

∆
, i = 1,2,3. (18)

Three linear shape functions Ni = Ni(x,y) can be described as

Ni = Li, i = 1,2,3. (19)

The shape function Ni is equal to 1 at the ith node of the triangle and it is equal to zero
at the other two nodes, because ∆i is equal to ∆ at node i and it is equal to zero at the
other two nodes. That is why the relation (2) is satisfied. It is obvious that the three shape
functions are linearly independent.

The linear shape functions Ni (i = 1,2,3) vary linearly over the triangle, because the
fraction ∆i/∆ measures the perpendicular distance of the point (x,y) toward the vertex
opposite to node i as it is illustrated in Fig. 13 and the linear shape function is constant
along such a line. The three linear shape functions are shown in Fig. 14.

If the potential at the nodes is known, then a linear approximation of the potential
function can be represented by (1). The derivative of a first order approximation is zeroth
order, i.e. constant. The magnetic field intensity H , or the magnetic flux density B
are constant within a triangle, if these are obtained from a first order approximation by
H = −∇Φ, or B = ∇×A. This may results in inaccurate solution. This is the reason
why higher order approximations are studied. Here, only the second and the third order
approximations are shown.
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Figure 12. The area function of a triangle.

Figure 13. Fraction ∆i/∆ measures the perpendicular distance of the point (x,y) toward
the vertex opposite to node i (here i = 1).

Higher order shape functions can also be built up by using the barycentric coordinates
L1, L2 and L3 introduced above in (18).
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Figure 14. The 2D linear shape functions N1(x,y), N2(x,y) and N3(x,y).

A polynomial of order n must contain all possible terms xp yq, 0 ≤ p+ q ≤ n, as it is
presented by Pascal’s triangle,

1

x y

x2 xy y2

x3 x2y xy2 y3 · · ·

The first row contains the only one term of the zeroth order polynomials, the second,
third and fourth rows contain the terms of the first, second and third order polynomials.
Pascal’s triangle can be used to generate the elements of a polynomial with given order.
Such a polynomial contains

m =
(n+ 1)(n+ 2)

2
(20)
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elements altogether, i.e. m = 1, m = 3, m = 6 and m = 10 in the case of zeroth, first,
second and third order polynomials. It means that m coefficients must be expressed, finally
m points must be placed within a triangle. Pascal’s triangle can be continued, of course.

The interpolation function of order n can be constructed as

Ni = Pn
I (L1)Pn

J (L2)Pn
K(L3), where I + J +K = n, (21)

and the integers I , J and K label the nodes within the triangle, resulting in a numbering
scheme. Figure 15, Fig. 16 and Fig. 17 illustrate the numbering scheme of the first, the
second and the third order approximations. It is noted that points must be inserted not only
the edges, but inside the triangle, if n > 2.

Figure 15. Numbering scheme for linear element, n = 1.

The polynomials Pn
I (L1), Pn

J (L2) and Pn
K(L3) are defined as

Pn
I (L1) =

I−1∏
p=0

nL1 − p
I − p

=
1

I!

I−1∏
p=0

(nL1 − p), if I > 0, (22)

Pn
J (L2) =

J−1∏
p=0

nL2 − p
J − p

=
1

J !

J−1∏
p=0

(nL2 − p), if J > 0, (23)

Pn
K(L3) =

K−1∏
p=0

nL3 − p
K − p

=
1

K!

K−1∏
p=0

(nL3 − p), if K > 0, (24)

and as a definition
Pn
0 = 1. (25)
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If n = 1, then m = 3, i.e. (see Fig. 15)

N1 = P 1
1 (L1)P 1

0 (L2)P 1
0 (L3) = L1, (26)

N2 = P 1
0 (L1)P 1

1 (L2)P 1
0 (L3) = L2, (27)

N3 = P 1
0 (L1)P 1

0 (L2)P 1
1 (L3) = L3, (28)

since

P 1
1 (Li) =

1−1∏
p=0

1Li − p
1− p

= Li, (29)

as it was mentioned in (19).

Figure 16. Numbering scheme for quadratic element, n = 2.

Figure 17. Numbering scheme for cubic element, n = 3.

360



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

If n = 2, then m = 6, i.e. (see Fig. 16)

N1 = P 2
2 (L1)P 2

0 (L2)P 2
0 (L3) = L1(2L1 − 1), (30)

N2 = P 2
0 (L1)P 2

2 (L2)P 2
0 (L3) = L2(2L2 − 1), (31)

N3 = P 2
0 (L1)P 2

0 (L2)P 2
2 (L3) = L3(2L3 − 1), (32)

N4 = P 2
1 (L1)P 2

1 (L2)P 2
0 (L3) = 4L1 L2, (33)

N5 = P 2
0 (L1)P 2

1 (L2)P 2
1 (L3) = 4L2 L3, (34)

N6 = P 2
1 (L1)P 2

0 (L2)P 2
1 (L3) = 4L1 L3, (35)

because

P 2
1 (Li) =

1−1∏
p=0

2Li − p
1− p

= 2Li, (36)

and

P 2
2 (Li) =

2−1∏
p=0

2Li − p
2− p

=
2Li

2

2Li − 1

1
= Li(2Li − 1). (37)

Figure 18 shows the shape functions N1 and N4. The other shape functions look like these,
N2 and N3 are the same as N1, moreover N5 and N6 are the same as N4, but they must be
rotated to the corresponding nodes.

Figure 18. The 2D quadratic shape functions N1(x,y) and N4(x,y).
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Finally, if n = 3, m = 10, shape functions can be constructed as (see Fig. 19)

N1 = P 3
3 (L1)P 3

0 (L2)P 3
0 (L3) =

1

2
L1(3L1 − 1)(3L1 − 2), (38)

N2 = P 3
0 (L1)P 3

3 (L2)P 3
0 (L3) =

1

2
L2(3L2 − 1)(3L2 − 2), (39)

N3 = P 3
0 (L1)P 3

0 (L2)P 3
3 (L3) =

1

2
L3(3L3 − 1)(3L3 − 2), (40)

N4 = P 3
2 (L1)P 3

1 (L2)P 3
0 (L3) =

9

2
L1(3L1 − 1)L2, (41)

N5 = P 3
1 (L1)P 3

2 (L2)P 3
0 (L3) =

9

2
L2(3L2 − 1)L1, (42)

N6 = P 3
0 (L1)P 3

2 (L2)P 3
1 (L3) =

9

2
L2(3L2 − 1)L3, (43)

N7 = P 3
0 (L1)P 3

1 (L2)P 3
2 (L3) =

9

2
L3(3L3 − 1)L2, (44)

N8 = P 3
1 (L1)P 3

0 (L2)P 3
2 (L3) =

9

2
L3(3L3 − 1)L1, (45)

N9 = P 3
2 (L1)P 3

0 (L2)P 3
1 (L3) =

9

2
L1(3L1 − 1)L3, (46)

N10 = P 3
1 (L1)P 3

1 (L2)P 3
1 (L3) = 27L1 L2 L3, (47)

because

P 3
1 (Li) =

1−1∏
p=0

3Li − p
1− p

= 3Li, (48)

Figure 19. The 2D cubic shape functions N1(x,y) and N5(x,y).
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P 3
2 (Li) =

2−1∏
p=0

3Li − p
2− p

=
3Li

2

3Li − 1

1
=

3

2
Li(3Li − 1), (49)

P 3
3 (Li) =

3−1∏
p=0

3Li − p
3− p

=
3Li

3

3Li − 1

2

3Li − 2

1

=
1

2
Li(3Li − 1)(3Li − 2).

(50)

These functions satisfy the condition (2). Figure 19 shows the shape functions N1 and
N5, as examples. The other shape functions look like these, N2 and N3 are the same as
N1, N4, N6, N7, N8 and N9 look like N5, but they must be imagined at the corresponding
nodes. The shape function N10 is equal to one at the center of mass of the triangle and
equal to zero on the other nine nodes.

The scalar potential along any edge of a triangle is the linear combination of the values
defined in the points of this edge (see Fig. 15, Fig. 16, Fig. 17), so that if two triangles share
the same vertice, the potential will be continuous across the interface element boundary.
This means that the approximate solution is continuous everywhere, however, its normal
derivate is not.

It is easy to see that the 1D shape functions are the same as the functions along the edges
of a triangle.

(iii) 3D linear shape functions can be worked out as follows when using tetrahedral
finite elements. Linear basis functions can be introduced again by using the barycentric
coordinate system. The volume of a tetrahedron is denoted by V and it can be expressed as

V =
1

6

∣∣∣∣∣∣
x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣ , (51)

where (x1,y1,z1), (x2,y2,z2), (x3,y3,z3) and (x4,y4,z4) are the coordinates of the four
nodes of the tetrahedron as shown in Fig. 20. The volume functions according to a given
point inside the tetrahedron with coordinates (x,y,z) can be calculated as

V1 =
1

6

∣∣∣∣∣∣
x4 − x y4 − y z4 − z
x4 − x2 y4 − y2 z4 − z2
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣ , (52)

V2 =
1

6

∣∣∣∣∣∣
x4 − x1 y4 − y1 z4 − z1
x4 − x y4 − y z4 − z
x4 − x3 y4 − y3 z4 − z3

∣∣∣∣∣∣ , (53)
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Figure 20. The volume functions in a tetrahedron.

V3 =
1

6

∣∣∣∣∣∣
x4 − x1 y4 − y1 z4 − z1
x4 − x2 y4 − y2 z4 − z2
x4 − x y4 − y z4 − z

∣∣∣∣∣∣ , (54)

V4 =
1

6

∣∣∣∣∣∣
x− x1 y − y1 z − z1
x− x2 y − y2 z − z2
x− x3 y − y3 z − z3

∣∣∣∣∣∣ . (55)

The barycentric coordinates Li = Li(x,y,z) of a tetrahedron can be formulated as

Li =
Vi
V
, i = 1,2,3,4. (56)

Four linear shape functions Ni = Ni(x,y,z) correspondingly to the four nodes are

Ni = Li, i = 1,2,3,4. (57)

A shape function Ni is equal to 1 at the ith node of the tetrahedron, moreover it is equal to
zero at the other three nodes and it is varying linearly within the tetrahedron, because the
fraction Vi/V measures the perpendicular distance of the point (x,y,z) toward the facet
opposite to node i as it is illustrated in Fig. 21 and the linear shape function is constant
along such a surface. That is why the relation (2) is satisfied. It is obvious that the four
shape functions are linearly independent.
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Figure 21. Fraction Vi/V measures the perpendicular distance of the point (x,y,z) toward
the facet opposite to node i (here i = 3).

The higher order shape functions can be worked out similarly as it was mentioned in the
case of triangular elements. The barycentric coordinates L1, L2, L3 and L4 can be used.
A polynomial of order n must contain all possible terms xp yq zr, 0 ≤ p+ q + r ≤ n and
a polynomial contains

m =
(n+ 1)(n+ 2)(n+ 3)

6
(58)

elements altogether, i.e. m = 1, m = 4, m = 10 and m = 20 in the case of zeroth, first,
second and third order polynomials. It means that m coefficients must be expressed and m
points must be placed within a tetrahedron.

The interpolation function of order n can be constructed as

Ni = Pn
I (L1)Pn

J (L2)Pn
K(L3)Pn

L (L4), where I + J +K + L = n, (59)

where the integers I , J , K and L label the nodes within the tetrahedra, resulting in a
numbering scheme. Figure 22, Fig. 23 and Fig. 24 illustrate the numbering scheme of the
first, the second and the third order approximations.

The polynomials Pn
I (L1), Pn

J (L2), Pn
K(L3) and Pn

L (L4) are defined in the same way
as it was presented in the 2D situation, see definitions (22)–(25).

If n = 1, then m = 4, i.e. (see Fig. 22)

N1 = P 1
1 (L1)P 1

0 (L2)P 1
0 (L3)P 1

0 (L4) = L1, (60)

N2 = P 1
0 (L1)P 1

1 (L2)P 1
0 (L3)P 1

0 (L4) = L2, (61)
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Figure 22. Numbering scheme for linear element, n = 1.

N3 = P 1
0 (L1)P 1

0 (L2)P 1
1 (L3)P 1

0 (L4) = L3, (62)

N4 = P 1
0 (L1)P 1

0 (L2)P 1
0 (L3)P 1

1 (L4) = L4, (63)

since (29) as it was mentioned in (57).

If n = 2, then m = 10, i.e. (see Fig. 23)

N1 = P 2
2 (L1)P 2

0 (L2)P 2
0 (L3)P 2

0 (L4) = L1(2L1 − 1), (64)

N2 = P 2
0 (L1)P 2

2 (L2)P 2
0 (L3)P 2

0 (L4) = L2(2L2 − 1), (65)

Figure 23. Numbering scheme for quadratic element, n = 2.

366



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

N3 = P 2
0 (L1)P 2

0 (L2)P 2
2 (L3)P 2

0 (L4) = L3(2L3 − 1), (66)

N4 = P 2
0 (L1)P 2

0 (L2)P 2
0 (L3)P 2

2 (L4) = L4(2L4 − 1), (67)

N5 = P 2
1 (L1)P 2

1 (L2)P 2
0 (L3)P 2

0 (L4) = 4L1 L2, (68)

N6 = P 2
0 (L1)P 2

1 (L2)P 2
1 (L3)P 2

0 (L4) = 4L2 L3, (69)

N7 = P 2
1 (L1)P 2

0 (L2)P 2
1 (L3)P 2

0 (L4) = 4L1 L3, (70)

N8 = P 2
1 (L1)P 2

0 (L2)P 2
0 (L3)P 2

1 (L4) = 4L1 L4, (71)

N9 = P 2
0 (L1)P 2

0 (L2)P 2
1 (L3)P 2

1 (L4) = 4L3 L4, (72)

N10 = P 2
0 (L1)P 2

1 (L2)P 2
0 (L3)P 2

1 (L4) = 4L2 L4, (73)

because (36) and (37).

Finally, if n = 3, m = 20 shape functions can be constructed as (see Fig. 24)

N1 = P 3
3 (L1)P 3

0 (L2)P 3
0 (L3)P 3

0 (L4) =
1

2
L1(3L1 − 1)(3L1 − 2), (74)

N2 = P 3
0 (L1)P 3

3 (L2)P 3
0 (L3)P 3

0 (L4) =
1

2
L2(3L2 − 1)(3L2 − 2), (75)

N3 = P 3
0 (L1)P 3

0 (L2)P 3
3 (L3)P 3

0 (L4) =
1

2
L3(3L3 − 1)(3L3 − 2), (76)

N4 = P 3
0 (L1)P 3

0 (L2)P 3
0 (L3)P 3

3 (L4) =
1

2
L4(3L4 − 1)(3L4 − 2), (77)

N5 = P 3
2 (L1)P 3

1 (L2)P 3
0 (L3)P 3

0 (L4) =
9

2
L1(3L1 − 1)L2, (78)

Figure 24. Numbering scheme for cubic element, n = 3.
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N6 = P 3
1 (L1)P 3

2 (L2)P 3
0 (L3)P 3

0 (L4) =
9

2
L2(3L2 − 1)L1, (79)

N7 = P 3
0 (L1)P 3

2 (L2)P 3
1 (L3)P 3

0 (L4) =
9

2
L2(3L2 − 1)L3, (80)

N8 = P 3
0 (L1)P 3

1 (L2)P 3
2 (L3)P 3

0 (L4) =
9

2
L3(3L3 − 1)L2, (81)

N9 = P 3
1 (L1)P 3

0 (L2)P 3
2 (L3)P 3

0 (L4) =
9

2
L3(3L3 − 1)L1, (82)

N10 = P 3
2 (L1)P 3

0 (L2)P 3
1 (L3)P 3

0 (L4) =
9

2
L1(3L1 − 1)L3, (83)

N11 = P 3
1 (L1)P 3

0 (L2)P 3
0 (L3)P 3

2 (L4) =
9

2
L4(3L4 − 1)L1, (84)

N12 = P 3
2 (L1)P 3

0 (L2)P 3
0 (L3)P 3

1 (L4) =
9

2
L1(3L1 − 1)L4, (85)

N13 = P 3
0 (L1)P 3

1 (L2)P 3
0 (L3)P 3

2 (L4) =
9

2
L4(3L4 − 1)L2, (86)

N14 = P 3
0 (L1)P 3

2 (L2)P 3
0 (L3)P 3

1 (L4) =
9

2
L2(3L2 − 1)L4, (87)

N15 = P 3
0 (L1)P 3

0 (L2)P 3
1 (L3)P 3

2 (L4) =
9

2
L4(3L4 − 1)L3, (88)

N16 = P 3
0 (L1)P 3

0 (L2)P 3
2 (L3)P 3

1 (L4) =
9

2
L3(3L3 − 1)L4, (89)

N17 = P 3
1 (L1)P 3

1 (L2)P 3
1 (L3)P 3

0 (L4) = 27L1 L2 L3, (90)

N18 = P 3
1 (L1)P 3

1 (L2)P 3
0 (L3)P 3

1 (L4) = 27L1 L2 L4, (91)

N19 = P 3
1 (L1)P 3

0 (L2)P 3
1 (L3)P 3

1 (L4) = 27L1 L3 L4, (92)

N20 = P 3
0 (L1)P 3

1 (L2)P 3
1 (L3)P 3

1 (L4) = 27L2 L3 L4, (93)

because of the equations (48), (49) and (50).

The scalar potential along any edge of a tetrahedron is the linear combination of the
values defined on the points of the given edge, so that if two tetrahedra share the same facet,
the potential will be continuous across this interface. This means that the approximate
solution is continuous everywhere, however, its normal derivate is not.

If potentials at the nodes are known, then a linear approximation of the potential function
can be represented by (1).

The sum of all nodal shape functions is equal to 1, hence the sum of their gradient is
zero,

m∑
i=1

Ni = 1, and

m∑
i=1

∇Ni = 0. (94)
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This means that the maximal number of linearly independent nodal basis functions is m
and the maximal number of linearly independent gradients of the nodal basis functions is
m− 1, i.e. shape functions are linearly independent but their gradients are not.

2.2. Edge finite elements

Vector potentials can be represented either by nodal shape functions or by so-called edge
shape functions. Edge shape functions are also called vector shape functions.

The natural approach is to treat the vector field T = T (r,t) as two or three coupled
scalar fields Tx = Tx(r,t), Ty = Ty(r,t) and Tz = Tz(r,t), i.e.

T = Txex + Tyey, (95)

and
T = Txex + Tyey + Tzez (96)

in 2D and in 3D situations, respectively, ex, ey and ez are the orthogonal unit vectors in
the x− y and in the x− y − z plane.

Nodal shape functions can be used in this case as well, as it was presented for scalar
potentials in the previous section, however, each node has two or three unknowns. Nodal
shape functions can be applied to approximate the scalar components of the vector field T .
For example in 3D, T can be approximated as

T '
m∑
i=1

Ni (Tx,i ex + Ty,i ey + Tz,i ez)

=

m∑
i=1

NiTx,i ex +

m∑
i=1

NiTy,i ey +

m∑
i=1

NiTz,i ez.

(97)

Here Ni = Ni(r) are the usual nodal shape functions defined by (2) and Tx,i = Tx,i(t),
Ty,i = Ty,i(t), Tz,i = Tz,i(t) are the values of components of the approximated vector
potential at node i. The number of degrees of freedom is 2m in a 2D problem using
triangular mesh and 3m in a 3D arrangement meshed by tetrahedral elements.

Nodal shape functions are used to approximate gauged vector potentials, which was the
first in the history of finite element method in electromagnetics. Unfortunately, there are
some problems when the usual nodal based finite elements are used to interpolate vector
potentials. The lack of enforcement of the divergence condition (lack of gauging) results in
a system of algebraic equations, which has infinite number of solution and the application
of iterative solvers sometimes fails. We have to take care about the Coulomb gauge.
There are problems on the iron/air interface when using the magnetic vector potential
approximated by nodal elements and extra interface conditions must be set up to solve this
problem.
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Fortunately, vector shape functions have been developed in the last decades, which
application in static and eddy current field problems is more and more popular, because of
their advantages. The use of edge shape functions solves the problems described above. It
will be shown that the divergence of vector shape functions is equal to zero, that is why,
gauging is satisfied automatically. The ungauged potential functions are approximated by
vector elements. Vector shape functions are usually called edge shape functions, because
they are associated to the edges of the FEM mesh. Vector shape functions are more and
more popular in wave problems, too.

Instead of scalar shape functions, vector shape functions (or edge shape functions)
W i = W i(r) can be applied to approximate a vector potential T ,

T '
k∑

i=1

W i Ti, (98)

where Ti = Ti(t) is the line integral of the vector potential T along the edge i. First order
vector shape functions are defined by the line integral∫

l

W i · dl =

{
1, along edge i,
0, along other edges, (99)

i.e. the line integral of the vector shape function W i along the ith edge is equal to one. In
other words, the vector shape function W i has tangential component only along the ith

edge and it has only normal component along the other edges, because W i · dl is equal
to zero only if the vectors W i and dl are perpendicular to each others and |W i||dl| > 0.
Moreover, in 3D case, the vector shape function W i has zero tangential component along
every facet of the 3D finite element, which not share the edge i.

If two triangles share the same vertices, the tangential component of the approximated
vector potential will be continuous across the interface element boundary. This is true in 3D
case as well, moreover, if two tetrahedra share the same facet, the tangential component of
the vector potential will be continuous across this interface. This means that the tangential
component of the approximate solution is continuous everywhere, however, its normal
component is not. In the words of equations, according to the definition (99), the line
integral of the vector potential along the mth edge is equal to Tm, i.e.∫

lm

T · dl =

∫
lm

(
k∑

i=1

W i Ti

)
· dl =

k∑
i=1

∫
lm

(W i Ti) · dl

=Tm

∫
lm

Wm · dl = Tm.

(100)
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That is why, edge shape functions are also called tangentially continuous shape functions.

The gradients of the nodal shape functions are in the function space spanned by the edge
basis functions, that is

∇Nj =

k∑
i=1

cjiW i, j = 1, · · · ,m− 1, (101)

where
∑k

i=1 c
2
ji > 0. Taking the curl of each equation in (101) results in

k∑
i=1

cji∇×W i = 0, j = 1, · · · ,m− 1, (102)

because ∇ × (∇ϕ) ≡ 0. This shows that the maximal number of linearly independent
curls of the edge basis functions is k − (m − 1). The interdependence of the curls of
the edge basis functions means that an ungauged formulation leads to a singular, positive
semidefinit finite element curl-curl matrix. Singular systems can be solved by iterative
methods, if the right-hand side of the system of equations is consistent. We took care about
it when obtaining the weak formulations of the ungauged version of potentials, because
excitation current density has been taken into account by the use of impressed current
vector potential, T 0.

The vector function
wij = Li∇Lj − Lj∇Li (103)

will be applied to construct the edge shape functions, because it can be used in functions,
which satisfies (99) and (100). In 2D, Li (i = 1,2,3) are the barycentric coordinates of
the triangle defined by (18). In 3D, Li (i = 1,2,3,4) are the barycentric coordinates of

Figure 25. The definition of edges with local directions of the triangular finite element.
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Figure 26. The definition of edges with local directions of the tetrahedral finite element.

the tetrahedron defined by (56). According to the notations in (103), the edges of a finite
element are pointing from node i to node j, as it can be seen in Fig. 25 and in Fig. 26.

The vector field wij has the following important properties, which proofs the use of
vector function wij as vector shape function.

(i) Let eij is a unit vector pointing from node i to node j, then

eij ·wij =
1

lij
, (104)

where lij is the length of edge {i,j}. This means that wij has constant tangential
component along the edge {i,j}.
Since Li and Lj are linear functions that vary from node i to node j from 1 to 0 and
from 0 to 1, respectively, we have eij · ∇Li = −1/lij and eij · ∇Lj = 1/lij , finally

eij ·wij = Li
1

lij
+ Lj

1

lij
=
Li + Lj

lij
=

1

lij
, (105)

because Li + Lj = 1 along the edge {i,j}. See, for example Fig. 14 and let i = 1,
j = 2, so N1 = L1 is decreasing along edge {1,2} and N2 = L2 is increasing
along the same edge. See also Fig. 7, from which it is easy to see the gradients
eij · ∇Li = −1/lij and eij · ∇Lj = 1/lij .
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(ii) In 2D, the function Li varies linearly from node i to the opposite edge {j,k} (see e.g.
N1 in Fig. 14, i = 1, j = 2, k = 3), i.e. the vector field∇Li is perpendicular to this
edge, but Li is zero there, that is why wij is perpendicular to the edge {j,k},

wij = −Lj∇Li, on the edge {j,k}, (106)

and the length of this vector is decreasing from node j to k according to Lj . On the
other hand, the function Lj varies linearly from node j to the opposite edge {k,i}
(see N2 in Fig. 14), i.e. ∇Lj is perpendicular to this edge, but Lj is zero there and
wij is perpendicular to the edge {k,i},

wij = Li∇Lj , on the edge {k,i}, (107)

and the length of this vector is decreasing from node i to k according to Li.
This with item (i) means that the vector function wij has tangential component only
on the edge {i,j} and it is perpendicular to the other edges.
In 3D, this is valid to the whole triangular facet with the bounding edges opposite to a
node, see e.g. Fig. 21.

(iii) The vector field wij is divergence-free,

∇ ·wij =∇·(Li∇Lj−Lj∇Li)=∇·(Li∇Lj)−∇ · (Lj∇Li)

=∇Li ·∇Lj + Li∇·∇Lj −∇Lj ·∇Li − Lj∇·∇Li =0,
(108)

by using the identity
∇ · (ϕv) = ∇ϕ · v + ϕ∇ · v (109)

with the notations ϕ = Li, v = ∇Lj in the second and ϕ = Lj , v = ∇Li in the last
term. The barycentric coordinates are linear functions of the coordinates and their
gradient is constant, which divergence is equal to zero, i.e. the second and fourth
terms are vanishing. The first and the third terms are equal, finally,∇ ·wij = 0.

(iv) The vector field wij has constant curl,

∇×wij =∇×(Li∇Lj−Lj∇Li)=∇·(Li∇Lj)−∇·(Lj∇Li)

=Li∇×∇Lj−∇Lj×∇Li−Lj∇×∇Li +∇Li×∇Lj

=2∇Li ×∇Lj ,

(110)

by using the identity
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∇× (ϕv) = ϕ∇× v − v ×∇ϕ (111)

with the notations ϕ = Li, v = ∇Lj in the first and ϕ = Lj , v = ∇Li in the second
term. The first and the third terms are equal to zero because of the identity∇×∇ϕ ≡ 0
for any function ϕ. The second term can be reformulated by a× b = −b×a, finally,
the result is constant, because the gradients of the barycentric coordinates are constant.

First, the edge shape functions defined on triangles based on (103) are collected. The
basic 2D vector shape functions W i can be constructed by using the first order nodal
shape functions,

W 1 = l1(N1∇N2 −N2∇N1)δ1, (112)

W 2 = l2(N2∇N3 −N3∇N2)δ2, (113)

W 3 = l3(N3∇N1 −N1∇N3)δ3. (114)

Here li (Fig. 25) denotes the length of the ith edges of the triangle and it is used to normalize
the edge shape function according to (104). The edge basis function W i (i = 1,2,3) has
tangential component only along the ith edge and it is perpendicular to the other two
edges as represented in Fig. 27(a)-27(c). It is easy to see that an edge shape function has
magnitude and direction. The value of δi is equal to ±1, depending on whether the local
direction of the edge is the same as the global direction or opposite (see Fig. 25 for local
direction). This set of vector functions is called zeroth order vector shape functions.

If the approximation of the vector function T is known along the edges of the mesh,
then (98) can be used to interpolate the function anywhere and in linear case K = 3.

Higher order vector shape functions can be constructed by using the vector function wij

defined by (103), too. This vector function must be multiplied by a complete interpolatory
polynomial, which results in the higher order vector shape functions. First and second
order polynomials will be used to build up first and second order vector shape functions.
Here, we follow, the method is as follows.

First of all, an indexing sequence must be set up, which is similar to the method used to
build up the scalar shape functions, because the higher order vector shape functions are
based on the Lagrange polynomials and (103). In the case of first order approximation,
the numbering scheme of the third order scalar interpolation can be used and the points
are shown in Fig. 28, Fig. 29 and Fig. 30 must be used to represent first order vector
shape functions associated to the edge {1,2}, {2,3} and {3,1}, respectively. In the case of
second order approximation, the numbering scheme of the fourth order scalar interpolation
can be used and the interpolation points shown in Fig. 31, Fig. 32 and Fig. 33 must be
used to represent second order vector shape functions associated to the edge {1,2}, {2,3}
and {3,1}, respectively. The interpolation points have been selected in this special way,
because the interpolation of field vectors along vertices has been avoided, i.e. the points
have been shifted inside the triangle and the indexing scheme of order n + 2 is used to
represent the vector interpolation of order n. This is called global numbering and denoted
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(a) The edge shape function W 1

(b) The edge shape function W 2

(c) The edge shape function W 3

Figure 27. The 2D edge shape functions.
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Figure 28. Numbering scheme for the first order vector element associated with w12.

Figure 29. Numbering scheme for the first order vector element associated with w23.

Figure 30. Numbering scheme for the first order vector element associated with w31.

by (I,J,K) on the ’big’ triangle, local numbering means the numbering scheme with the
real order (i,j,k) defined over the ’small’ triangle.
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Figure 31. Numbering scheme for the second order vector element associated with w12.

Figure 32. Numbering scheme for the second order vector element associated with w23.

Figure 33. Numbering scheme for the second order vector element associated with w31.

It is noted here that the COMSOL Multiphysics software uses this kind of vector shape
functions, however, n = 0, n = 1 and n = 2 are named as linear, quadratic and cubic
vector shape functions.

377



M. Kuczmann – Acta Technica Jaurinensis, Vol.8., No.4., pp. 347–383, 2015

The vector function wab (associated to the edge pointing from node a to node b) can be
multiplied by the Lagrange polynomials as

W IJK
ab = αIJK

ab Pn
i (l1)Pn

j (l2)Pn
k (l3)wab, (115)

where n is the order of approximation and the integers i, j and k satisfy i + j + k = n
(see the small triangles in Fig. 28-Fig. 33).

If n = 0, the basic vector shape functions can be obtained, because P 0
m(·) = 1 and α

can be selected as the length of the appropriate edge, lab, since αIJK
ab is a normalizing

factor. The barycentric coordinates l1, l2 and l3 are imagined in the small triangles. The
transformation between local and global numbering is as follows:

i = I − 1, j = J − 1, k = K, on the edge {1,2}, (116)

i = I, j = J − 1, k = K − 1, on the edge {2,3}, (117)

i = I − 1, j = J, k = K − 1, on the edge {3,1}. (118)

The relation between the barycentric coordinates of the small and the big triangles is as
follows:

l1 = L1
n+ 2

n
, l2 = L2

n+ 2

n
− 1

n
, l3 = L3

n+ 2

n
− 1

n
. (119)

Using these relations, (115) can be written as (let here {ab} = {23} for simplicity)

W IJK
23 = αIJK

23 Pn
I

(
L1
n+ 2

n

)
Pn
J−1

(
L2
n+ 2

n
− 1

n

)
Pn
K−1

(
L3
n+ 2

n
− 1

n

)
w23.

(120)

According to (22), Lagrange polynomials can be reformulated as

Pn
I

(
L1
n+ 2

n

)
=

1

I!

I−1∏
p=0

(
nL1

n+ 2

n
− p
)

=
1

I!

I−1∏
p=0

[(n+ 2)L1 − p] = Pn+2
I (L1) , if I > 0,

(121)
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and

Pn
J−1

(
L2
n+ 2

n
− 1

n

)
=

1

(J − 1)!

J−2∏
p=0

[
n

(
L2
n+ 2

n
− 1

n

)
− p
]

=
1

(J − 1)!

J−2∏
p=0

[(n+ 2)L2 − 1− p]

=
1

(J − 1)!

J−2∏
p=0

[
(n+ 2)

(
L2 −

1

n+ 2

)
− p
]

=Pn+2
J−1

(
L2 −

1

n+ 2

)
, if J > 1.

(122)

The so-called shifted Silvester polynomials can be used to simplify the relations above,

Sn+2
J (L2) = Pn+2

J−1

(
L2 −

1

n+ 2

)
=

1

(J − 1)!

J−1∏
p=0

[(n+ 2)L2 − p] . (123)

Finally, the higher order vector shape functions can be formulated as follows by using
the Lagrange and Silvester polynomials:

W IJK
12 = αIJK

12 Sn+2
I (L1)Sn+2

J (L2)Pn+2
K (L3)w12, (124)

W IJK
23 = αIJK

23 Pn+2
I (L1)Sn+2

J (L2)Sn+2
K (L3)w23, (125)

W IJK
31 = αIJK

31 Sn+2
I (L1)Pn+2

J (L2)Sn+2
K (L3)w31. (126)

The parameter denoted by α is a normalization factor, which must have the value such that
the line integral of vector shape function W IJKL

ab is equal to 1 on the edge pointing from
node a to node b. Here,

Pn
0 (·) = 1, and Sn

1 (·) = 1. (127)

The number of vector basis functions is

k = (n+ 1)(n+ 3). (128)

There is one shape function associated with the introduced interpolation nodes on the
edges. It means 3(n+ 1) basis functions. There are three basis functions for an interior
interpolation point, because every interpolation point inside the triangle is used to build
all the vector shape functions in the three edges. Since a surface vector has only two
degrees of freedom, these three basis functions are not independent and one of them must
be discarded. This results in n(n + 1) interior basis functions. In total, the number of
shape functions is 3(n+ 1) + n(n+ 1) = (n+ 3)(n+ 1).
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In the case of first order approximation n = 0 and k = 3. In the case of second order
approximation n = 1 and K = 8. In the case of third order approximation n = 2 and
k = 15 and so on.

The first order vector shape functions are as follows:

W 1 =W 120
12 = α120

12 S3
1(L1)S3

2(L2)P 3
0 (L3)w12 = α120

12 (3L2 − 1)w12, (129)

W 2 =W 210
12 = α210

12 S3
2(L1)S3

1(L2)P 3
0 (L3)w12 = α210

12 (3L1 − 1)w12, (130)

W 3 =W 111
12 = α111

12 S3
1(L1)S3

1(L2)P 3
1 (L3)w12 = α111

12 3L3 w12, (131)

W 4 =W 012
23 = α012

23 P 3
0 (L1)S3

1(L2)S3
2(L3)w23 = α012

23 (3L3 − 1)w23, (132)

W 5 =W 021
23 = α021

23 P 3
0 (L1)S3

2(L2)S3
1(L3)w23 = α021

23 (3L2 − 1)w23, (133)

W 6 =W 102
31 = α102

31 S3
1(L1)P 3

0 (L2)S3
2(L3)w31 = α102

31 (3L3 − 1)w31, (134)

W 7 =W 201
31 = α201

31 S3
2(L1)P 3

0 (L2)S3
1(L3)w31 = α201

31 (3L1 − 1)w31, (135)

W 8 =W 111
31 = α111

31 S3
1(L1)P 3

1 (L2)S3
1(L3)w31 = α111

31 3L2 w31. (136)

The second order vector shape functions are as follows using (124)–(127):

W 1 = W 310
12 = α310

12 S4
3(L1)S4

1(L2)P 4
0 (L3)w12

= α310
12

1

2
(4L1 − 1)(4L1 − 2)w12,

(137)

W 2 = W 220
12 = α220

12 S4
2(L1)S4

2(L2)P 4
0 (L3)w12

= α220
12 (4L1 − 1)(4L2 − 1)w12,

(138)

W 3 = W 130
12 = α130

12 S4
1(L1)S4

3(L2)P 4
0 (L3)w12

= α130
12

1

2
(4L2 − 1)(4L2 − 2)w12,

(139)

W 4 = W 211
12 = α211

12 S4
2(L1)S4

1(L2)P 4
1 (L3)w12

= α211
12 (4L1 − 1)4L3 w12,

(140)

W 5 = W 121
12 = α121

12 S4
1(L1)S4

2(L2)P 4
1 (L3)w12

= α121
12 (4L2 − 1)4L3 w12,

(141)

W 6 = W 031
23 = α031

23 P 4
0 (L1)S4

3(L2)S4
1(L3)w23

= α031
23

1

2
(4L2 − 1)(4L2 − 2)w23,

(142)

W 7 = W 022
23 = α022

23 P 4
0 (L1)S4

2(L2)S4
2(L3)w23

= α022
23 (4L2 − 1)(4L3 − 1)w23,

(143)
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W 8 = W 013
23 = α013

23 P 4
0 (L1)S4

1(L2)S4
3(L3)w23

= α013
23

1

2
(4L3 − 1)(4L3 − 2)w23,

(144)

W 9 = W 121
23 = α121

23 P 4
1 (L1)S4

2(L2)S4
1(L3)w23

= α121
23 (4L1)(4L2 − 1)w23,

(145)

W 10 = W 112
23 = α112

23 P 4
1 (L1)S4

1(L2)S4
2(L3)w23

= α112
23 (4L1)(4L3 − 1)w23,

(146)

W 11 = W 103
31 = α103

31 S4
1(L1)P 4

0 (L2)S4
3(L3)w31

= α103
31

1

2
(4L3 − 1)(4L3 − 2)w31,

(147)

W 12 = W 202
31 = α202

31 S4
2(L1)P 4

0 (L2)S4
2(L3)w31

= α202
31 (4L1 − 1)(4L3 − 1)w31,

(148)

W 13 = W 301
31 = α301

31 S4
3(L1)P 4

0 (L2)S4
1(L3)w31

= α301
31

1

2
(4L1 − 1)(4L1 − 2)w31,

(149)

W 14 = W 112
31 = α112

31 S4
1(L1)P 4

1 (L2)S4
2(L3)w31

= α112
31 (4L2)(4L3 − 1)w31,

(150)

W 15 = W 211
31 = α211

31 S4
2(L1)P 4

1 (L2)S4
1(L3)w31

= α211
31 (4L2)(4L1 − 1)w31.

(151)

The vector shape functions in 3D can be constructed as the extension of the above
presented 2D realization. Three-dimensional zeroth order edge shape functions can be
constructed as,

W 1 = l1(N1∇N2 −N2∇N1)δ1, (152)

W 2 = l2(N2∇N3 −N3∇N2)δ2, (153)

W 3 = l3(N3∇N1 −N1∇N3)δ3, (154)

W 4 = l4(N1∇N4 −N4∇N1)δ4, (155)

W 5 = l5(N2∇N4 −N4∇N2)δ5, (156)

W 6 = l6(N3∇N4 −N4∇N3)δ6. (157)

Here li (Fig. 26) is the length of the edges and it is used to normalize the edge shape
function according to (104). The value of δi is also equal to ±1 depending on whether
the local direction of the edge is the same as the global direction or opposite. The edge
definition employed in my analysis can be seen in Fig. 26.
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If the approximation of the vector function T is known along the edges of the mesh,
then (98) can be used to interpolate the function anywhere and in linear case k = 6.

To construct higher order vector basis functions, the points of interpolation polynomials
are arranged in a pyramid format to build an applicable numbering scheme (I,J,K,L)
and I,J,K,L = 0,1, · · · ,n + 2, where n is the order of the element. The illustration of
numbering scheme in 3D is not easy, but it can be construct as follows. Let us imagine the
same numbering scheme on the triangular facets of the tetrahedron as in Fig. 31-Fig. 33
and the integers I , J , K and L can be set up according to the facets.

The vector shape functions of order n are given as,

W IJKL
12 = αIJKL

12 Sn+2
I (L1)Sn+2

J (L2)Pn+2
K (L3)Pn+2

L (L4)w12, (158)

W IJKL
23 = αIJKL

23 Pn+2
I (L1)Sn+2

J (L2)Sn+2
K (L3)Pn+2

L (L4)w23, (159)

W IJKL
31 = αIJKL

31 Sn+2
I (L1)Pn+2

J (L2)Sn+2
K (L3)Pn+2

L (L4)w31, (160)

W IJKL
14 = αIJKL

14 Sn+2
I (L1)Pn+2

J (L2)Pn+2
K (L3)Sn+2

L (L4)w14, (161)

W IJKL
24 = αIJKL

24 Pn+2
I (L1)Sn+2

J (L2)Pn+2
K (L3)Sn+2

L (L4)w24, (162)

W IJKL
34 = αIJKL

34 Pn+2
I (L1)Pn+2

J (L2)Sn+2
K (L3)Sn+2

L (L4)w34. (163)

The parameters denoted by α are normalization factors, which must have the value such
that the line integral of the vector shape function W IJKL

ab is equal to 1 on the edge pointing
from node a to node b.

The number of edge shape functions when defining the nth order family is

k =
(n+ 1)(n+ 3)(n+ 4)

2
. (164)

For each interpolation point on the edge, there is one corresponding vector shape function,
which means 6(n+ 1) functions. For each interpolation point on the face of a tetrahedron
there are three vector functions, but one of them is depending on the other two and it
must be discarded, finally there are 4n(n+ 1) vector shape functions defined on the four
facets. For each interpolation points inside the element there are six basis functions. A
3D vector has only three degree of freedom, that is why three vector basis functions must
be discarded resulting in n(n − 1)(n + 1)/2 vector basis functions. Totally, there are
6(n + 1) + 4n(n + 1) + n(n − 1)(n + 1)/2 = (n + 1)(n + 3)(n + 4)/2 vector shape
functions. There are k = 6, k = 20 and k = 45 shape functions for n = 0, n = 1 and
n = 2, respectively.

As an example, the following vector shape functions can be set up when n = 1,
W 2100

12 , W 1200
12 , W 0210

23 , W 0120
23 , W 1020

31 , W 2010
31 , W 2001

14 , W 1002
14 , W 0201

24 , W 0102
24 ,

W 0021
34 , W 0012

34 , W 1110
12 , W 1110

31 , W 1011
14 , W 1011

34 , W 0111
23 , W 0111

24 , W 1101
12 , W 1101

24 .
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