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Abstract: In modern logistics it might be helpful to describe the behavior of a complex
logistical process as well as to determine the strength of relations between
certain parameters of the system. In this paper a subspace identification
approach has been applied to estimate the relation between the features of
the system based on measured input-output pairs. In order to validate the
suitability of the approach for logistical processes a queuing based model has
been proposed and used to generate simulation data. Our analysis as well as
the obtained results clearly reflect that subspace identification approaches can
advantageously be applied to model the relation between certain parameters
of the system, nevertheless to characterize the strength of this relation, as
well.
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1. Introduction

As in many fields also in logistics system modeling and identification approaches play
significant role especially when accurate models of complex logistical processes (LP) are
needed. Such models may be helpful to predict various features related to the modeled
system, such as the response time or in case of supply chains the delivery cycle time,
customer order path (related to time spent in different channels), etc. A framework to
promote the better understanding of supply chain performance measurement and metrics
can be followed for example in [8]. Trough monitoring of performance metrics analytic or
statistical models of the observed LP can be designed.

Depending on the knowledge about the modeled system a broad range of solutions
can be utilized. Since complex logistical systems are non-linear MIMO systems and are
influenced by many parameters their modeling is not a trivial task. Many methods have
been proposed to deal with multi-input, multi-output systems in the literature. Perhaps the
most popular tool in this topic is the linear parameter varying (LPV) structure by which
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non-linear systems can be modeled and controlled on the basis of linear control theories. If
there is no knowledge about the inner structure of the logistic system such as for instance
the concrete service strategy and other internal mechanisms only black box like solutions
(mainly heuristic approaches) are utilized. In this case the system might be identified based
on measured input-output data. In the literature many models (as for instance scheduling,
transportation planning, flow-shop sequencing problem) related to logistic systems are
based on the fuzzy set and fuzzy control theory [2][3], statistics or their combination
[9][10]. Furthermore, the most recent results of the numerical algebra, such as the higher
order singular value decomposition and the related tensor product transformation (making
connection between LPV models and higher order tensors) offer promising tools to bridge
heuristic and analytic approaches. In such a joint framework besides analytic description
of the system the expert knowledge can be considered, as well. This may further improve
the effectiveness and extend the applicability of the related methods [7][6].

Many times it is difficult to find a proper mathematical model in form of differential
equations which would suitable approximate the behavior of the observed logistical process
even if the identification of the system is considered locally. However subspace identi-
fication techniques combined with tensor product transformation seem to be promising
to model complex logistical processes based on input-output data. In this case there is
no need for an explicit model parametrization, which is a rather complicated matter for
multi-output linear systems [1]. During this research our motivation was first of all to
investigate and to show how efficiently subspace identification techniques can be used
in case of systems where long delays may occur. We have been focusing first of all on
logistical processes which are good examples of such systems. In order to accurately
identify the system on subspace basis the input must be persistently exciting, i.e. it must
contain sufficiently many distinct frequencies. The Gaussian white noise, pseudo-random
binary noise, etc. are the most suitable choices for input. However in case of a logistical
process the arrival of demands is considered to be a Poisson process. However arriving
demands usually enter the queue of waiting demands which acts like a ’damper’ thus to
take directly the arrival of demands as input (depending on the size of the mentioned queue
and delays in the system) is many times not suitable for identification. Therefore instead
of taking the direct input, during the experiments a transformed input has been considered.
Such a transformed input is efficient even in case when the arrival of demands is modeled
by a Poisson or other type of processes. The main contribution of the paper is to show how
efficiently a transformed input can be used to identify its relation to certain parameters of
the logistical process. In addition it will be shown how the strength of these relations can
be characterized with the help of the identified model.

The paper is organized as follows: Section 2 gives a brief overview of subspace iden-
tification for deterministic case, Section 3 deals with supply chain models in relation to
subspace identification. In Section 4 and 5 examples are reported together with model vali-
dation, Section 6 points out the possibilities of embedding logistical processes into linear
parameter varying (LPV) framework, finally conclusions and future works are reported.
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2. Overview on Subspace Identification of LTI Systems

Before turning the focus onto logistical processes, let us give a brief description on how
subspace identification techniques can be used to identify linear time invariant (LTI) vertex
models in the parameter space. Let us assume that the local behavior of the logistical
system is deterministic, thus it can be described in the well known state space form as
follows:

xk+1 = Axk + Buk (1)

yk = Cxk + Duk, (2)

where xk ∈ Rn stands for the state vector, uk and yk represent the input and output
vector respectively at time k. The goal is to find the model matrices A, B, C and D based
on input-output pairs. As described in [1] let us first arrange the input-output pairs into so
called Hankel matrices (reflecting the history of our input-output data):

U1|i =


u1 u2 . . . uj
u2 u3 . . . uj−1
...

... . . .
...

ui ui+1 . . . uj+i−1

 , (3)

Y1|i =


y1 y2 . . . yj
y2 y3 . . . yj−1
...

... . . .
...

yi yi+1 . . . yj+i−1

 , (4)

and let the history of states (unknown) to be estimated encode as follows:

Xi =
[
xi xi+1 . . . xi+j−1

]
. (5)

It can be recognized from (2) that all row vectors in Y1|i are in the vector space
determined by the union of row space of Xi and U1|i. Let us assume that the intersection
of row space of Xi and U1|i is empty. The most simple alternative for estimating Xi (up to
a constant multiple C) is to project the row space of Yi onto orthogonal complement of
the row space of U1|i. The elements of Yi can be expressed with the help of the extended
observability matrix Γi and lower block triangular Toeplitz matrix Hi form as follows [1]:

Y1|i = ΓiX1 + HiU1|i, (6)

where
Γi =

[
C CA . . . CAi−1

]>
(7)
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and

Hi =


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0

CAi−2B CAi−3B . . . CB D

 . (8)

By substituting recursively into (1) we can express the state sequence Xi+1 as follows:

Xi+1 = AiX1 + ∆iU1|i, (9)

where
∆i =

[
Ai−1B Ai−2B . . . AB B

]
(10)

stands for the reversed extended controllability matrix [1]. From (6) the state sequence X1

can be expressed as:
X1 = Γ∗iY1|i − Γ∗iHiU1|i, (11)

By substituting (11) into (9) we obtain:

Xi+1 = AiΓ∗iY1|i − AiΓ∗iHiU1|i + ∆iU1|i. (12)

Let us express Xi+1 as the sum of two matrices, where one of the matrices contains only
the input-output values, i.e.

Xi+1 = LiW1|i, (13)

where
Li =

[
∆i − AiΓ∗iHi AiΓ∗i

]
(14)

and
W1|i =

[
U1|i Y1|i

]>
. (15)

Since based on (6)

Yi+1|2i = ΓiXi+1 + HiUi+1|2i = ΓiLiW1|i + HiUi+1|2i. (16)

Let us now project Yi+1|2i onto orthogonal complement of Ui+1|2i. Since the projection
of HiUi+1|2i onto its orthogonal complement is empty subspace we obtain [1]:

Yi+1,2i/U⊥i+1,2i = ΓiLiW1|i/U⊥i+1,2i (17)

(Yi+1,2i/U⊥i+1,2i)(W1|i/U⊥i+1,2i)
−1 = ΓiLi, (18)

(Yi+1,2i/U⊥i+1,2i)(W1|i/U⊥i+1,2i)
−1W1|i︸ ︷︷ ︸

Oi+1

= Γi LiW1|i︸ ︷︷ ︸
Xi+1

, (19)

Oi+1 = ΓiXi+1 (20)

Let us investigate the structure of Oi+1. Based on (7) and (5) it can be expressed as:
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T. Vadvári, P. Várlaki – Acta Technica Jaurinensis, Vol. 8, No. 1, pp. 63–76, 2014

Oi+1 =
[
C CA . . . CAi−1

]> [xi+1 xi+2 . . . xi+j
]
. (21)

Based on (21) the rank of Oi+1 equals to the rank of the state sequence matrix Xi+1.
Equivalently, the dimensionality of the state vector x equals to the dimensionality of Oi+1.
The rank of Oi+1 can be determined by singular value decomposition (SVD) as follows[1]:

Oi+1 = U1S1V1 (22)

ΓiXi+1 = U1S1/2
1 TT−1S1/2

1 V1, (23)

where T is an arbitrary invertible square matrix represen-ting a similarity transformation.

Xi+1 = T−1S1/2
1 V1 (24)

X̃i+1 = S1/2
1 V1 (25)

The system matrix can be estimated in the least squares sense from the following set of
equations: [

X̃i+2

Yi+1

]
=

[
Ã B̃
C̃ D̃

] [
X̃i+1

Ui+1

]
, (26)

where Ui+1 and Yi+1 are input and output block Hankel matrices, respectively having one
block row.

3. Modeling Supply Chains on Subspace Basis

In this section let us introduce our proposed queuing model suitable to describe and
analyze supply chains or loading systems. As depicted in Fig. 1 the system is composed
of resource pools, queues, servicing processes. Incoming customers or demands stand
for the input of the system. The resource pools are categorized according to the type of
the resource. To each resource pool a FIFO queue is connected. Resources waiting in
the resource queue are assigned to demands (depending on the service the customer is
requesting for). To each service a servicing time is assigned. Let us denote it TS . After
servicing a given demand the corresponding customer can leave the system while the
used resources are released and directed back to the pool of resources of the given type.
Servicing a request might be considered as an oriented graph where the nodes represent
sub-services and the edges correspond to the ordering and delay of execution between
these nodes.

By using such a concept various types of supply chains can be simulated and analyzed.
For simplicity in the followings let us assume that services are composed of one node.
However the same approach might be applied for services divided to numerous sub-services,
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as well. During this investigation our main goal was to show how queuing models can be
identified based on input-output data by using subspace identification techniques.

As already mentioned in the introduction the arrival of demand is modeled by a pseudo-
random binary noise however due to the queue of waiting demands (acting like a ’damper’)
its impact on the system behavior is less significant (depending on the internal structure
and parameters of the system). Thus several kind of processes (Poisson process, burst
arrival, etc.) can be used to model the arrival of demands, due to long delays it does not
significantly affect the efficiency of the identification. Therefore during these experiments a
transformed input has been considered (see later in this section). In addition, identification
based on input-output data might also be suitable to evaluate the strength of relation
between certain parameters of the system.

The parameters of the system are for instance the queue lengths Lqi, number of resources
NRi, servicing times TSj , where i and j stand for the number of resource pools and number
of sub-services, respectively. In the following sections let us investigate a structure where
i = 1 and j = 1, i.e. there is only one type of resource and one service.

Figure 1. Illustration of the system architecture

4. Example 1

In this example our goal was to estimate a deterministic state space model describing
the relation between the average waiting time of resources mr(t) and the average waiting
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time of demands md(t). Before going further let us show the configuration of the analyzed
system:

• NR = 3

• Lq = 3

• Lc = 1000

• TS is an exponential random variable with mean E[TS ] = 3

• Arrival of demands d(t): pseudo-random binary sequence (customer generation event
is triggered at rising and falling edges)

• Limit of simultaneously serviced customers: 3

Figure 2. The transformed input md(t)

By considering the above configuration the relation between the two mentioned features
of the system has been modeled by subspace identification technique (considering the
deterministic case). Fig. 2 shows the input signal reflecting the average waiting time of
demands in the corresponding queue. Furthermore, in Fig. 3 the measured and modeled
average waiting time of resources in the resource queue can be followed. It is clear that
the input in this case stands for a transformed input namely md(t). In the first parts of
the experiment 200 input-output pairs have been used (generated by the above system)
for model estimation. The system matrices have been determined based on the described
subspace identification approach. As it can be seen the obtained model nicely follows the
characteristics of the measured output. In the second part of this experiment only the first
100 input-output pairs have been considered during the model estimation and the rest 100
pairs have been used for validation (see Fig. 4). As reflected by Fig. 4 also in this case the
model output nicely follows the characteristics of the measured data. On the other hand
if the incoming rate of customers d(t) is considered as input (a pseudo-random number
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Figure 3. The measured average waiting time of resources mr(t) (red), the output of the
identified model (blue), Input: md(t) (left), Bode diagram of the identified model (right)

Figure 4. Validation of the identified model. The measured average waiting time of
resources mr(t) (red), the output of the identified model (blue), Input: md(t) (the first half
of samples has been used for model estimation while the second half for validation (left),
Error percentage histogram corresponding to the estimated model (right)

in our case) the obtained model is inaccurate (see Fig. 5). The primary reason for this is
the length of queues and the related long delays in the system. If the maximal length of
the customer queue is set to a smaller value, more accurate model is obtained. It can be
assumed that the accuracy of the obtained model is strongly influenced by the strength of
dependence between the two selected features.
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T. Vadvári, P. Várlaki – Acta Technica Jaurinensis, Vol. 8, No. 1, pp. 63–76, 2014

Figure 5. The measured average waiting time of resources mr(t) (red), the output of
the identified model (blue), Input: d(t). As it can be seen, the model is of low accuracy
which indicates weak relation between the used input-output variables (left), Bode diagram
corresponding to the model (right)

5. Example 2

The main goal was to model the number of entities in the queue of resources. The input
in this example is TS while the output the number of available resources waiting in the
queue. Let us consider the following system configuration:

• NR = 40

• Lq = 40

• Lc = 1000

• TS is an exponential random variable with mean E[TS ] = 3

• Arrival of customers: pseudo-random binary sequence (customer generation event is
triggered at rising and falling edges)

• Limit of simultaneously serviced customers: 40

The input signal can be followed in Fig. 6. It represents the duration of the servicing
assigned to a given demand over time. In the first part of this experiment – similarly to
the previous example – 200 input-output pairs have been used for model estimation. The
measured number of free resources over time together with the output of the identified
model can be followed in Fig. 7. The matrices of the obtained deterministic state space
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Figure 6. The input signal TS

model are as follows:

A =

 0.41814 −0.080494 −0.28302
−0.27051 −0.86992 −0.066373
0.16624 −0.36498 −0.27266

 , B =

 0.033479
0.014832
0.0090137

 ,

C =
[
−8.94 0.51886 −1.5867

]
, D =

[
0
]
, X =

 0.77666
−0.31588

1.1808

 .

Figure 7. The measured number of free resources (red), output of the identified model
(blue), Bode diagram of the identified model (right)

In the second part of the experiment – also similarly to the previous example – only
the first 100 input-output pairs have been considered during the model estimation and
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Figure 8. Validation of the identified model. The measured number of free resources (red),
output of the identified model (blue) (left), Error percentage histogram corresponding to
the estimated model (right)

the rest 100 pairs have been used for validation. The obtained model nicely follows the
characteristics of the measured output in both cases (see Fig. 8). The error percentage
histogram in Fig. 8 well reflects the accuracy of the estimated model.

6. Queuing Systems in LPV Framework

In this section let us give a brief description how queuing systems can be described
by linear parameter varying models. It is clear that in complex queuing systems there
might be many parameters which may strongly affect the behavior of the whole system.
If we discretize the parameter space over a hyper-rectangular grid, for each grid point
a linear time invariant (LTI) model can be assigned. The global behavior of the system
can be obtained by ”blending” the local models properly. Depending on the number of
discretization points the number of identified local models might be significant, thus to
reduce their number by keeping the accuracy at acceptable level plays another important
task in this field [5]. Here the higher order singular value decomposition (HOSVD) plays
significant role [4].

Let us consider the following linear parameter varying (LPV) state-space model [5]:(
ẋ (t)
y (t)

)
= S (p (t))

(
x (t)
u (t)

)
, (27)

where u (t) ∈ Ru stands for the system input, y (t) ∈ Rv represents the output of the sys-
tem and x (t) ∈ Rk denotes the state vector. Furthermore p (t) = (p1 (t) , · · · ,pN (t)) ∈
Ω,

Ω = [a1,b1]× [a2,b2]× · · · × [aN ,bN ] ⊂ RN ,
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and

S (p (t)) =

(
A (p (t)) B (p (t))
C (p (t)) D (p (t))

)
∈ R(k+v)×(k+u). (28)

S (p (t)) for arbitrary p(t) parameter vector can be expressed in tensor product form as
follows: (

ẋ (t)
y (t)

)
=
(
S �Nn=1 wT

n (pn)
)( x (t)

u (t)

)
, (29)

where vector wT
n (pn) ∈ RIn , n = 1..N , contains continuous and bounded func-

tions wn,in (pn) on interval [an,bn], in = 1..In. The (N + 2)-dimensional tensor
S ∈ RI1×···×IN+2 contains the system matrices of linear time invariant vertex systems [5]:

Si1···iN = {Si1···iN ,α,β ,1 ≤ α ≤ IN+1,1 ≤ β ≤ IN+2}

Si1···iN ∈ RIN+1×IN+2

Applying HOSVD on the first N dimensions of S we obtain the following:(
ẋ (t)
y (t)

)
=
[(

D �Nn=1 Un

)
�Nn=1 wT

n (pn)
]( x (t)

u (t)

)
(

ẋ (t)
y (t)

)
=

D �Nn=1 UnwT
n (pn)︸ ︷︷ ︸

w̃T
n (pn)

( x (t)
u (t)

) , (30)

where D stands for the core tensor, and functions w̃n,jn (pn) are the weighting functions
[5]In order to reduce the number of LTI vertex systems the rightmost columns of matrices
Un may be removed. Some recent applications related to LPV systems and TP model
transformation can be found in [11],[12].

7. Future work and Conclusions

In the present paper a queuing approach for modeling logistical processes has been
proposed. It was shown how the relation between parameters of such queuing models can
be identified on subspace basis. The results clearly reflect that in case of strong relation
between two system features the identified model nicely approximates the modeled system.
On the other hand if this relation is weak the identified model (based on the corresponding
input-output pairs) reflects significantly lower accuracy. In addition it was briefly shown
how complex logistical systems could be modeled on LPV basis by blending locally
identified linear models together. In our case the vertex systems stand for state space
models identified based on input-output data. These models are then embedded into tensor
representation and transformed into tensor product form. In such form model reduction
can also be directly executed.
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