
Acta Vol. 8, No. 1, pp. 47–62, 2015
Technica DOI: 10.14513/actatechjaur.v8.n1.348
Jaurinensis Available online at acta.sze.hu

On Wavelet Based Modeling of the Nitrogen Oxides
Emission and Concentration due to Road Traffic in

Urban Environment

Sz. Nagy
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Abstract: Differential equations can be solved wavelet-based by representing the con-
tinuous functions by their wavelet expansion coefficients and thus the cor-
responding differential equations are transformed to matrix equations. The
wavelet basis functions are organized into resolution levels of different fre-
quency terms at different locations, and the main advantage of the wavelet
expansion representation is that the wavelet based differential equation solv-
ing methods can be adaptive, it is possible to refine the solution locally, if the
precision is not sufficient at some regions.
In case of the nitrogen oxides convection-advection equation, the urban
environment should be taken as special material parameter in the differential
equation’s operator, and the matrix elements of the differential operator has to
be calculated in a non-continuous environment, and the obstacles are placed
so, that they are not at the boundaries of the support of the wavelets.
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1. Introduction

Multiresolution analysis (MRA) or the wavelet analysis (the wavelet theory’s basics are
precisely summarized e.g., in [1, 2]) is a widely used tool of data and image processing,
and it also has increasing share within differential equation solving methods. However, in
modeling pollutant’s convection, advection and dispersion they are only sporadically used
[3] even though they have the natural ability to use different scales simultaneously.

The passengers and other participants of the urban traffic are exposed to the pollutants
exhausted by the vehicles, and several of these pollutants are toxic, carcinogenic, or at least
maleficent for living beings. The pollutants in the air are monitored regularly, but usually
on only a few points per city and few times per day. Of course, these data are also valuable
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but higher spatial and temporal resolution would be more desirable, especially because
of epidemiological reasons, like monitoring the effect of the pollutant concentration on
respiratory organ, or cardiovascular problems [4, 5].

The combination of the measured data with computational modeling is a recent trend in
approximating the concentration of the pollutants [8, 9] – like one of the most dangerous
group, the nitrogen oxides –, and the used models can be grouped into two subgroups, the
large-scale models tend to apply grids with grid distance of tens of kilometers [6], while the
small-scale ones can not treat larger scale tendencies [7]. Crooks and Isakov use wavelets to
combine the two scales [3] based on the scalability of the wavelets: that the resolution level
can be different at different locations, if the solution function contains higher frequency
terms in one place and restricted to lower frequencies at other places, like the urban and
rural environment. This property is also the main reason of their applications in image
processing and compressing, like in the JPEG2000 standard [10], or the NASA’s ICER
[11]. However, none of the models in [3] calculate on wavelet basis, just the combination
scheme is wavelet based.

This article shortly introduces the wavelet analysis in the next section, then derives the
advection-diffusion equation’s discretized form, and as the last step, gives calculation rules
for determining the discretized form in urban environment. The goal is not to solve the
diffusion equation in wavelet basis, it can be found in many applications, like [12–14], but
to give a solution for modeling the urban environment – mainly the position of the buildings
and roads, the various wind speed, – in formulating the discretized matrix equations and
calculating the matrix elements. For a proper modeling of the obstacles locally different
diffusion coefficients would be necessary, and these coefficients can be well approximated
as step functions of the position. The matrix elements generated from step functions are
calculated in this contribution.

2. On wavelet analysis

Wavelets, the basis functions of MRA, are localized functions, they arise as dilations and
translations of one common mother wavelet, moreover they can be used as simple building
elements in expansion of continuous functions and they can describe the different features
of different scales and positions well. Although wavelet-based methods, similarly to the
finite elements solving schemes, are also members of the Galerkin-type solver family [15],
the discretization technique in this case is more flexible, it can be systematically adapted to
the problem during the solution itself, no previous knowledge or guess is necessary about
the possible solution and its detailed and roughly representable regions. Wavelets are the
basis functions of the system, they form an infinite series of refining resolution levels, each
doubling the frequency resolution.

The effectiveness of the MRA technique lies in the fact, that in higher resolution levels
most of the wavelets are unnecessary for sufficiently precise resolution, most of the
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expansion coefficients are zero in these levels and thus they should not be stored and
should not be included into the calculations [13, 16–21]. Calculating these coefficients
and discarding them would be the first approximation, however, it is a waste of time and
capacity if a method can be derived that predicts, which coefficients are the most important
ones, and which are almost zero. In order to ensure the adaptivity and economy, a clear,
quick, easily calculable prediction algorithm is necessary to decide which wavelets of the
next resolution level are needed and which can be neglected, and such algorithms exist both
for elliptical differential equations with sources [22] and for eigenvalue type differential
equations [23]. In these applications, starting from an already calculated resolution level,
the authors produce an economic prediction algorithm for determining whether a given
wavelet in a given position is necessary for the sufficiently precise next level solution or it
can be neglected. The method can be used for estimating the error of the given resolution
solution.

2.1. Multiresolution analysis

In multiresolution analysis (MRA) or wavelet analysis the studied Hilbert space is
decomposed into infinite resolution level subspaces, each one embedded to the higher
resolution level subspaces, Vm ⊂ Vm+1 {Vm, m ∈ Z}. The basic resolution level
V0 is spanned by a single function, a so called mother scaling function φ(x), all the
basis functions in the subspace are shifted versions of φ(x) on an equidistant grid as
φ`(x) = φ(x− `),` ∈ Z.

The higher resolution level mother scaling functions are generated from the basic
resolution level one as φ(2mx), and the basis functions are φm,`(x) = φ(2mx− `), which
means that the grid is shrunk, as well. A very important property of the scaling functions is
that the finer resolution level subspace Vm+1 contains the lower resolution level subspaces,
like Vm, thus all the functions in the rougher resolution level subspace – as the mother
scaling function itself – can be expanded at the finer resolution subspace. This expression
of the mother scaling function as a linear combination of the next level basis functions

φ(x) = 21/2
Ns∑
i=0

hiφ(2x− i), (1)

is called the refinement equation, and it is one of the basic equations of wavelet analysis.
The expansion coefficients hi determine the scaling function’s shape, with the normaliza-
tion condition

∑Ns

i=0 hi = 1, and the number Ns gives the support of the mother scaling
function, i.e., the support is [0,Ns). In most of the cases, the larger support means smoother
scaling functions, e.g., in the Daubechies scaling function family, the first one has Ns = 1
and it is a step function, the second one with Ns = 3 is everywhere continuous, but
not everywhere differentiable, the third one is differentiable (Ns = 5), the fifth is twice
differentiable (Ns = 9), etc.
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A function, like the concentration of the nitrogen oxides in the air can be expressed – or
usually just approximated – at resolution level M as

C [M ](x) =
∑
`∈ΩM

cM` φM`(x), (2)

where cM` are the expansion coefficients, i.e. the discretized version of the concentration,
and all the indices, variables can be in one two or three dimensions – in higher dimensions,
a scaling function can be e.g., φm1,m2,`1,`2(x1,x2) = φm1,`1(x1) · φm2,`2(x2), but other,
non diadic product higher dimensions scaling functions exist, too, though very rarely used.
The domain ΩM where the indices run is connected to the support of the function C(x)
and the scaling functions and the number of its elements approximately doubles at each
resolution level increment.

2.2. Wavelets and details

Wavelets are basis functions of the subspaces given as a difference between two neigh-
boring resolution level scaling function subsets,

Vm+1 = Vm ⊕Wm (3)

These subsets, the so called detail spaces, are also generated from one single mother
wavelet ψ(x), similarly to the scaling functions, as ψm,`(x) = ψ(2mx− `).

The wavelets can also be expanded at the higher resolution level subspaces, like

ψ(x) = 21/2
Ns∑
i=0

(−1)ih∗−i+1φ(2x− i), (4)

with the same coefficients hi as in (1). Here, the sign ∗ means complex conjugation. As a
result of introducing the wavelets, a function C(x) can approximated at resolution level
M not only as (2), but also as

C [M ](x) =
∑
`∈Ω0

c0` φ0`(x) +

M−1∑
m=0

∑
`∈Ωm

dm` ψm`(x). (5)

Here Ωm contains all the wavelets of resolution level m that overlap with the support of
the function C(x).

Theoretically the number of coefficients to be treated in (2) and in (5) are the same, but
most of the coefficients dm,` are very small and can be neglected. Smooth functions can
be approximated very precisely in low resolution levels, only those parts of the functions
need higher resolution, where the function varies rapidly, or has derivative discontinuities.

Of course, the sets of coefficients cM,` and c0,` with dm,` can be transformed into each
other using equations (1), (4) and their inverse.
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3. The advection diffusion equation for nitrogen oxides

Nitrogen oxides are usually from high temperature combustion, in case of urban environ-
ment, the traffic and the combustion engines are the main source of the nitrogen monoxide,
NO. As NO is a free radical, having one unpaired electron, it is easily oxidized in the air to
nitrogen dioxide, NO2, that forms the infamous brownish dome above larger cities, and it
can be further oxidized to acids, or other compounds depending on the other pollutants.

Air quality modeling, especially the modeling of the nitrogen oxides concentration,
where several gases transform to one another can be carried out using weather conditions –
like the moisture and the wind speed –, average vehicle count, etc. for describing these
phenomena convection–advection equation in 2D along the coordinate x [24, 25](

∂

∂t
− µ ∂2

∂x2
+ u

∂

∂x
− σ

)
C(x,y,t) = F (x,y,t), (6)

is a good approximation. Here µ is the diffusion coefficient from Fick’s law, u is the
velocity of the wind in the direction of x, σ is the constant that covers the concentration
changes due to chemical reactions, and F (x,y,t) describes the sources of the pollutants.

It is possible to use the three dimensional version of the above equations, with proper
height and 3D wind and drift velocities, but as a first step, for demonstration, Eq. (6) is
sufficient.

3.1. Discretization of the equation

As a first step, Eq. (6) is discretized in time [22], i.e., it is approximated with a Crank-
Nicholson finite difference equation. This scheme can be used in wavelet-based partial
differential equation solvers, if not an eigensolution, but a time variation is needed, and
there is a set of initial conditions. The bundary conditions are usually given in Dirichlet
scheme, but in case of drifts – like the pollutants in the wind – the Neumann boundary
conditions can be useful as well. The wavelet based solutions usually work well periodic
boundary conditions.

Then both the known source and the unknown concentration should be expanded at the
basic resolution level. As the basic scale can be chosen arbitrarily, without the loss of
generality, we can select 0 as the basic level, thus

C [0](x) =
∑
`∈Ω0

c
[0]
0` φ0`(x), (7)

F [0](x) =
∑
`∈Ω0

f
[0]
0` φ0`(x). (8)

The notation c[0]
0` and f [0]

0` can be introduced for the vector of the expansion coefficients of
the concentration and the source, respectively. The discretization step goes as follows. If
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in the finite time differences counterpart of Eq. (6) the above formulae are applied and the
equation is multiplied by an arbitrary scaling function, or by an arbitrary linear combination
of the scaling function, it should remain valid, according to the weak formulation of the
discretized equation. According to the previous statement, if the inner product 〈·,·〉 is
introduced, and the differential operator is denoted by D̂, the time-discretized differential
equation can be written as

〈φ0,k, D̂c
[0]〉 = 〈φ0,k,f

[0]〉 (9)

for all basis functions φ0,k of the subspace V0 – of course, only those scaling functions are
to be taken into account that overlap with the solution, i.e., the elements of Ω0. The result
is a matrix equation

D
[0]
k,`c

[0]
` = f

[0]
k (10)

with the source vector

f
[0]
k = 〈φ0,k, f

[0]〉 =

∫
φ∗0,k(x)f [0](x)dx (11)

and the stiffness matrix

D
[0]
k,` = 〈φ0,k, D̂φ0,`〉 =

∫
φ∗0,k(x) · D̂φ0,`(x)dx. (12)

If higher resolution terms are also necessary for the precision, not only scaling function
matrix elements, but wavelet matrix elements are also necessary. The expansion of the
concentration and the source function at maximum resolution level M is given as

C [M ](x) =
∑
`∈Ω0

c
[M ]
0` φ0`(x) +

M−1∑
m=0

∑
`∈Ωm

d
[M ]
m` ψm`(x), (13)

F [M ](x) =
∑
`∈Ω0

f
[M ]
0` φ0`(x) +

M−1∑
m=0

∑
`∈Ωm

g
[M ]
m` ψm`(x), (14)

resulting in the M th level matrix equation 〈φ0,k, D̂φ0,`〉 〈φ0,k, D̂ψn,`〉

〈ψm,k, D̂φ0,`〉 〈ψm,k, D̂ψn,`〉

 ·
 c

[M ]
0,`

d
[M ]
n,`

 =

 f
[M ]
0,k

g
[M ]
m,k

 . (15)

Here the notation
D[M ]
µ,ν = 〈ξm,k,t, D̂ξn,`,s〉 (16)

can also be introduced with the three-element indices µ = {m,k,t} and ν = {n,`,s},
where t and s denotes the type of the basis function ξ which can be either wavelet, or
scaling function.
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3.2. Matrix elements of resolution level M = 0

The above matrix elements D[0]
k,`, and D[M ]

µ,ν can be calculated using the refinement equa-
tion (1) and the wavelet’s expansion equation (4). No numerical integration is necessary,
if the operator D̂ contains only the following types of terms: differentiations according
to the space variable – as long as the scaling functions can be differentiated as many
times as necessary –, multiplications with any positive power of the space variable, or any
combination of the two [23, 26].

Substituting the refinement equation into (12), straightforward, but lengthy calculations
lead to an eigenvalue equation in case of D̂ being either a derivative operator or a product
with a power of the space variable. As an example, for the first derivative’s matrix element
the refinement equation for the differentiated scaling function is necessary, which differs
from (1) only by a factor of 2, i.e.,

∂

∂x
φ(x) = 2 · 21/2

Ns∑
i=0

hi
∂

∂x
φ(2x− i). (17)

After substituting (1) and (4) into the formula

〈φ0,0,
∂

∂x
φ0,`〉 =

∫
(φ(x))

∗ ∂

∂x
φ(x− `)dx, (18)

changing the integral variable then the summation index, the matrix element turns into

〈φ0,0,
∂

∂x
φ0,`〉 = 2

Ns∑
k=0

Ns+2`−k∑
i=2`−k

h∗khi+k−2`〈φ0,0,
∂

∂x
φ0,k〉, (19)

which is clearly an eigenvalue equation for the eigenvalue 0.5 of the matrix

1M`k =
∑
i

h∗i hk+i−2`. (20)

For the second derivative the eigenvectors corresponding to eigenvalue 0.25, for the third
derivative, the eigenvectors corresponding to eigenvalue 0.125, etc. are giving the matrix
elements, if they exist.

Note, that the matrix element (18) depends only on the difference of the indices, i.e.,

〈φ0,j ,
∂

∂x
φ0,j+`〉 = 〈φ0,0,

∂

∂x
φ0,`〉. (21)

For the operators that contain products with xp, similar considerations lead to a set
of iterative matrix equations, where the product with xp depends on the product with
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xp−1, xp−2, . . . [23]

〈φ0,0, x
p · φ0,`〉 = 2−p

p∑
q=0

(
p

q

) Ns∑
k=0

Ns+2`−k∑
i=2`−k

kq · h∗khi+k−2` 〈φ0,0, x
q · φ0,i〉. (22)

For the 0th order polynomial, as well as for the 0th derivative 〈φ0,0, φ0,`〉 = δ0` is valid.
Here δab is the usual Kronecker delta distribution: it is 1 if a = b and 0 in all other cases.

In the usual advection-diffusion equation no polynomials of the spatial coordinates are
present, so the discretization of Eq. (6)(

T − µ〈φ0,k,
∂2

∂x2
φ0,`〉+ u〈φ0,k,

∂

∂x
φ0,`〉 − σ〈φ0,k, φ0,`〉

)
c
[0]
` = f

[0]
k , (23)

where T summarizes the finite difference terms arising from the time discretization,
depending on the method of deriving the finite differences, the number of previous time
steps, the length of the time steps and the initial conditions.

3.3. Matrix elements for higher resolutions and wavelets

In case of (16) the matrix elements can be calculated from those of D[0]
k,` using (1), (17)

and (4) – and its derivative counterparts – respectively [23,26]. As a first step, if one of the
resolution indices are non-zero in (18) or (21) the refinement equation results in

〈φ00,
∂

∂x
φm`〉 = 2

Ns∑
k=0

h∗k〈φ00,
∂

∂x
φm−1 `−2m−1k〉. (24)

If the other index is also larger than 0, then the smaller of the two resolution levels can be
compensated by refinement equations, and the problem is led back to (24) as

〈φnk,
∂

∂x
φm`〉 =

 2n〈φ00,
∂
∂xφm−n `−2m−nk〉, if m > n,

2m〈φ00,
∂
∂xφn−m k−2n−m`〉, if n > m.

(25)

Using the scaling function expansion of the wavelet’s derivative – which is very similar
to (4), just a factor of 2 is introduced –, straightforwardly results in the wavelet matrix
elements

〈φnk,
∂

∂x
ψm`〉 =

Ns∑
i=0

h∗−i+1〈φnk,
∂

∂x
φm+1 i+2`〉, (26)

〈ψnk,
∂

∂x
φm`〉 =

Ns∑
j=0

h−j+1〈φn+1 j+2k,
∂

∂x
φm`〉, (27)

〈ψnk,
∂

∂x
ψm`〉 =

Ns∑
i=0

Ns∑
j=0

h−j+1h
∗
−i+1〈φn+1 j+2k,

∂

∂x
φm+1 i+2`〉. (28)
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3.4. Matrix elements for discontinuous functions

In wavelet-based calculations the borders and the discontinuities cause always a problem,
as the wavelets have finite support and can usually approximate continuous functions.
Having a step-function in the system, like in case of the urban traffic the buildings, streets,
and other obstacles necessitates numerical integration, which takes long time and gives
not very high precision. For example, Table 1 contains the matrix element of a simple
rectangular function

Rk(x) =

{
1 if x ∈ [k,k + 1),
0 if x ∈ (−∞,k) ∪ [k + 1,∞).

(29)

for 210, 215, 220 and 223 points in the interval. The last row contains also the duration of
the calculations, as an average of more runs on a desktop computer with dual core 2.2 GHz
processor and 4 GB RAM, in Matlab.

Only the matrix elements kY` = 〈φ0,0, Rkφ0,`〉 are calculated, with k ∈ {0,1, . . . ,Ns−
1} as these rectangular functions overlap with the support of the scaling function φ0,0.
Also those matrix elements are zero, where the two basis functions do not overlap – i.e.,
where |`| > Ns − 1 is valid –, and where the rectangular function Rk does not overlap
with φ0,` – i.e., where ` < k − Ns + 2 or ` > k. All the other matrix elements can be
derived by simple shifts, as 〈φ0,i, Rk+iφ0,`+i〉 = 〈φ0,0, Rkφ0,`〉.

As the sum of the above matrix elements give the 〈φ0,0, φ0,`〉 integrals, the following
sum rules have to be fulfilled

〈φ0,0, φ0,−Ns+1〉 =0Y−Ns+1,

〈φ0,0, φ0,−Ns+2〉 = 0Y−Ns+2 +1Y−Ns+2,

〈φ0,0, φ0,−Ns+3〉 = 0Y−Ns+3 + 1Y−Ns+3 +2Y−Ns+3,

...
〈φ0,0, φ0,0〉 = 0Y0 + 1Y0 + 2Y0 +. . .+ Ns−2Y0 + Ns−1Y0,

〈φ0,0, φ0,1〉 = 1Y1 + 2Y1 +. . .+ Ns−2Y1 + Ns−1Y1,

...
〈φ0,0, φ0,Ns−2〉 = Ns−2YNs−2+Ns−1YNs−2,

〈φ0,0, φ0,Ns−1〉 = Ns−1YNs−1,

(30)
Note, that all of the values on the left hand side are zero, except for 〈φ0,0, φ0,0〉, which is
1.

It can be seen from Table 1, that the precision increases slowly and the duration of the
calculation increases very rapidly. Alternatively to the numerical integration I suggest
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another calculation method similar to the ones presented in the previous two subsections.
If the matrix element is calculated according to its definition

kY` = 〈φ0,0, Rk(x)φ0,`〉 =

∫ k1

k

φ∗(x)φ(x− `)dx (31)

and the refinement equation (1) is substituted into both φ∗0,0 and φ0,` after changing of the
integration variable one arrives at

kY` = 2

Ns∑
i1=0

Ns∑
i2=1

h∗i1hi2
(

2`+i2−i1Y2k−i1 +2`+i2−i1 Y2k−i1+1

)
. (32)

The above equation also leads on an eigenvalue equation of the matrix

M
[0]
k,` =


B1 B0 0 0 . . . 0
B3 B2 B1 B0 . . . 0
B5 B4 B3 B2 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 BNs

BNs−1

 , (33)

with the blocks Bz =

hNsh
∗
z+

hNsh
∗
z−1

hNs−1h
∗
z−1 0 0 0 . . . 0

hNs−2h
∗
z+

hNs−3h
∗
z−1

hNs−1h
∗
z+

hNs−2h
∗
z−1

hNs
h∗z+

hNs−1h
∗
z−1

hNsh
∗
z−1 0 . . . 0

...
...

...
...

...
. . .

...

0 . . . 0 h0h
∗
z

h1h
∗
z+

h0h
∗
z−1

h2h
∗
z+

h1h
∗
z−1

h2h
∗
z+

h1h
∗
z−1

0 . . . 0 0 0 h0h
∗
z

h1h
∗
z+

h0h
∗
z−1



.

(34)
Matrix M [0]

k,` has an eigenvector corresponding to eigenvalue 1, and this eigenvector can
be normalized due to (30), as 〈φ0,0, φ0,i〉 = δi0. Numerical checks were carried out for
various scaling functions. In case of Daubeches-6 basis set (Ns = 5), the normalization
condition is

1 = 〈φ0,0, φ0,0〉 =0 Y0 +1 Y0 +2 Y0 +3 Y0 +4 Y0, (35)

and the resulting matrix elements are listed in Table 2 The differences between the quanti-
ties kY` numerically integrated and calculated with the eigenvalue method (32) are plotted
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Table 2. Matrix elements kY` with their calculation time t of the rectangular functions
Rk(x) as a result of the eigenvalue-based calculation. Daubechies-6 scaling functions are
used with Ns = 5.

0Y−4 −0.000000000000000
0Y−3 −0.000441328283277
0Y−2 −0.018793135706778
0Y−1 0.123328235715790
0Y0 0.496647798105380
1Y−3 0.000441328283277
1Y−2 0.018927524425738
1Y−1 −0.117675941460163
1Y0 0.470948730352582
1Y1 0.123328235715790
2Y−2 −0.000134388718960
2Y−1 −0.005684787772732
2Y0 0.031063532712708
2Y1 −0.117675941460163
2Y2 −0.018793135706778
3Y−1 0.000032493517105
3Y0 0.001338460918000
3Y1 −0.005684787772732
3Y2 0.018927524425738
3Y3 −0.000441328283277
4Y0 0.000001477911329
4Y1 0.000032493517105
4Y2 −0.000134388718960
4Y3 0.000441328283277
4Y4 −0.000000000000000
t (s) 0.002132
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Figure 1. Difference of the numerically integrated values kY` from their counterparts
calculated with an eigenvalue equation of matrix M [0]

k,` as a function of the grid points
in a unit interval 2ε. Red color with continuous line means k = 0, green with dash-dot
line mean k = 1, blue with dashed line k = 2, cyan with dotted line k = 3 and the color
yellow and markers without line means k = 4. The markers ∗,5 , ◦ ,+ , and � stand for
the indices ` = k − 4, k − 3, k − 2, k − 2 and k respectively.

in Figure 1. Also the calculation time is shown on Figure 2, where an approximate power
law behavior can be seen as expected for the numerical integrations.

In case of derivatives, similarly to the continuous case described in (19), each differenti-
ation introduces only a factor of 2 to the matrix M [0]

k,`, thus the eigenvector corresponding
to the eigenvalues 0.5, 0.25, etc. should be found for the matrix elements with the first,
second, etc. derivatives respectively.

The transformation to higher resolution levels goes similarly to (24–28), except, that
with each use of the refinement equation, the number of the elements 〈φm,i, Rk(x)φn,`〉
doubles, so for higher resolution levels an exponentially increasing number of lower
resolution level integrals should be taken into account.

4. Summary

In wavelet-based modeling the concentration changes of nitrogen oxides and other air
pollutants in urban environment discontinuities are arising around the obstacles that the
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Figure 2. Computation time of the numerical integrations as a function of of the grid points
in a unit interval 2ε.

gases can not penetrate. The discretization of these discontinuities can be carried out not
only by numerical integration, but also by a much quicker and more economic calculation –
derived in this paper – based on the eigenvalue equation of a matrix generated from the
coefficients of the refinement equation, the basic equation of the wavelet analysis. The size
of the matrix is N2

s , with Ns being the length of the support of the wavelets.

The calculated matrix elements are system independent, they depend only on the type
of the wavelets used, thus in later calculations they can be loaded from a database, but
for calculating this database as precisely as possible, the method developed in this article,
based on the results of [23, 26], is necessary.
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