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Abstract: In the paper a heuristic approach is introduced aimed first of all to model
supply chains which behavior may depend on many parameters and their
analytic description is many times problematic. The proposed approach is
based on identifying local vertex models in the parameter space in form of
multilayer perceptrons (MLPs). The parameter varying neural system might
then be modeled as the convex combination of the identified vertex systems.
Depending on the dimension of the parameter space the number of identified
vertex models might be large, therefore they reduction is crucial. In order to
achieve this goal, first the vertex systems are transformed into HOSVD based
polytopic representation followed by complexity reduction.
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1. Introduction

In supply chains one can observe that the information demand varies between its certain
stages (see 1), i.e. the effective demand forecasting may be crucial from their performance
point of view [11][8]. Usually the first stage is represented by the supplier and the
last one by the customer. In-between there may be numerous stages, e.g. warehouse,
retailer, etc. [14], which behavior might depend on many parameters thus the input-output
characteristics of the whole system may reflect strong non-linearity. Each stage may further
be divided into sub-stages making the modelling task more difficult. For designing control
systems of such logistical processes the service strategy and operational algorithm of the
given system must be known. Service strategy is the set of procedures, rules that determine
the direction, feature and measure of state transformation of the system and its sub-systems
for all possible situations and conditions [2].

Various models have already been developed for supply chains [13][9]. Most of these
models are based on the fuzzy set theory, which represents the basis of many models
where the handling of the imprecision is of key importance [10]. Various publications are
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Figure 1. Illustration of state transitions between certain stages of loading system [2]

dealing with the performance of supply chains in connection with the forecasting models
[11][12][7]. Most of these techniques belong to the category of heuristic or analytical
approaches. Loading systems as subsystems of supply chains may efficiently be modelled
by heuristic approaches.

The main contribution of the proposed approach is to identify local heuristic models
over a hyper-rectangular grid in the parameter space, reduce their number and blend them
together according to the actual value of parameter vector. Since the identification of
local models is usually based on noisy measurements and depending on the complexity
of the system the number of models to be identified might be significant it is adequate
to represent the local models in such a framework in which the number of these models
as well as the noise can be reduced efficiently. In other words, we are searching for such
a reduced set of MLP models which convex combination approximates the behavior of
the system effectively. Similar approaches are used to control non-linear systems on the
basis of linear control theories [4], however in our case the models are represented by local
MLPs.

The paper is organized as follows: Section 2 gives a brief description of loading systems
and their models including the loading processes, in Section 3 a possible approach is
described where the loading system is considered as a parameter varying system modeled
by locally identified neural networks. Finally Section 4 reports conclusions.

2. Models of Loading Systems

In a loading system numerous state transitions may occur. Since the behavior of such
a system is nonlinear and depends on many parameters it can be embedded into an
LPV framework and modeled by the above mentioned technique, as well. Numerous
measurements are needed to identify the local models in the parameter space. Fig. 3
illustrates the schematic model of the technical and technological process by a complex
loading system. There are n types of goods loaded, unloaded and temporary stored in the
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Figure 2. Illustration of the general stochastic demand- adaptive handling system [2]

analysed system. The states of processes running in the system are shown as circles and
rectangles, the transitions are represented by directional arrows [2].

In case of stochastic loading systems linking two stochastic processes is causeless to
suppose the independency of onset and service, especially the system contains intermittent-
duty, mobil, material handling machines. Models developed on that basis are suitable for
approximate disquisitions only. In case of a loading system the demand process influences
the service process, controls it, accelerates or slows down the executive process. Those
loading systems where the input influences the system’s processes are referred as adaptive
loading systems. Depending on the type of performed changes in the system three cases can
be distinguished, namely the spontaneous homothroph and the heterotroph adaptivity. The
spontaneous adaptivity is related to intensity changes of services, the homotroph adaptivity
considers the number of elements in the system while the heterothroph adaptivity is related
to functional change of elements [1],[2].

type of change this case the service intensity, the number of elements in the system

2.0.1. The Input of the Loading System

• LI - Loaded transportation vehicle arriving

• EI - Empty transportation vehicle.

2.0.2. Loading processes

• WU - Transportation vehicle waiting for unloading

• WL - Transportation vehicle waiting for loading

• TS - Temporary storing or warehouse

• SIU - Interrupted state of unloading
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Figure 3. Illustration of loading processes[2]

• SU - State of unloading

• MU - Unloading machine

• MW - Working loading machine waiting for loading

• ML - Loading machine

• SL - State of loading

• SIL - Interrupted state of loading

• MO - Loading machine out of work

2.0.3. The Output of the Loading System

• LO - Transportation vehicle leaving loaded

• EO - Transportation vehicle leaving empty
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3. MLPs in HOSVD Based Framework

By monitoring the parameters of the loading system its behavior can numerically be
reconstructed and modeled. Since the number of monitored parameters might be large
it is reasonable to perform the identification locally and model the whole system by an
identified set of simpler models. Although the number of models necessary to accurately
describe the dynamics of the whole system might be large (depending on the number
of parameters and discretization points), it is reasonable to transform the local models
into such a representation in which the models are ordered according to their significance
in order to reduce their number. In such a framework the less significant models are
responsible for modeling the details and noise, thus by dismissing few from them the noise
may also be reduced.

This section deals with the problem of embedding MLPs into HOSVD based framework
in order to reduce the number of vertex systems (in our case MLPs). The main advantage
of this approach lies in modeling a complex parameter varying system by blending simpler
MLP models together. The HOSVD-based framework offers an efficient tool for their
reduction.

Let us consider a parameter varying loading system modeled by blending local multilayer
perceptron (MLP) models which correspond to different parameter vectors. Let us further
suppose that these local MLP models are identical in structure. Their architecture is
depicted by Fig. 4. The output of such a local model can be expressed as follows [15]:
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j = 1..NL (Number of layers (NL) in our example represented by Fig. 4 is 3),

h =
(
h1 h2 · · · hR 1

)T
stand for the input vector, while vector

a3 =
(
a31 a31 · · · a3S3

)T
represents the output of the NN in Fig. 4.

In order to identify the vertex MLP-based models - corresponding to the nodes of a
hyper-rectangular grid in the parameter space - measurements are needed. The nodes of
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Figure 4. Architecture of vertex neural models [15]. (R = S0)

the hyper-rectangular grid stand for those parameter vector values for which the local
behavior of the system has to be identified. Let us denote the number of discretization
points for the jth dimension as Ij . Based on such measurements (input-output pairs)
the proper weights of the vertex MLP-based models are determined. From the weight
matrices of corresponding layers of vertex MLP models an N+2 dimensional tensor
Bi ∈ <I1×I2×···×IN×Sj×(1+Sj−1) can be constructed [15]. Index i indicates the layer
index of the MLP. Since in case of a loading system the number of parameters N and the
number of identified vertex models corresponding to the certain dimensions may be large
it is reasonable to reduce the complexity, i.e. the number of considered vertex models.
The reduction can be performed efficiently by decomposing Bi (containing the weight
matrices of corresponding layers) to a set of orthonormal components by HOSVD. Since
the approximation is performed in the parameter space, the HOSVD is performed only for
the 1st N dimensions of Bi. The decomposition will result a core tensor Di having the
same size as Bi and N pieces of orthonormal matrices in which the columns stand for the
components ordered according to their significance. From such a form the less significant
components can be dismissed, thus the number of vertex models can be reduced [5],[15]:

a3 (p) = ϕ3

(
W(3)(p)ϕ2

(
W(2)(p)ϕ1

(
W(1)(p)h

)))
, (2)

where
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where p stands for the vector of parameters, Di the core tensor corresponding to the ith
layer and the elements of vector valued functions

ξ(i)n (pn) =
(
ξ
(i)
n1 (pn) ξ

(i)
n2 (pn) · · · ξ

(i)
nIn

(pn)
)

are the function values of components (corresponding to the nth dimension of Di) at
parameter value pn.

3.1. Complexity Reduction

Let us express equations (3)-(5) in the following form:
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It follows from the properties of the HOSVD, that the rightmost columns of singular
matrices in each dimension represent those weighting functions which are responsible for
describing the details involved in the measurement data. According to the above indexing
the ξnin functions with larger in index are of less significance, thus by dismissing them
the number of local models can be reduced by keeping the approximation error at lower
level. It is the best low rank approximation of the original tensor, i.e. giving the minimal
Frobenius norm

∥∥∥W(i) − W̃(i)
∥∥∥, where i denotes the layer index and W̃(i) stands for the

approximation of W(i) as follows:
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where 0 < Ijr < Ij , j = 1..N , matrices d(i)
i1,i2,...,iN

stand for the weight matrices of vertex
models for the ith layer. The output of the approximated MLP can then be expressed as:

ã3 = ϕ3

(
W̃(3)ϕ2

(
W̃(2)ϕ1

(
W̃(1)h

)))
(12)

4. Conclusions

In the paper a theoretical approach has been introduced for modeling loading systems
having various parameters. Instead of looking onto the system as a unit, we proposed to
model it by the combination of simpler models identified in the parameter space. As simpler
models local MLPs have been considered and transformed into polytopic representation in
order to blend them efficiently together according to the actual parameter vector as well as
to reduce the number of identified models according to their significance. As future work
we are going to test the suitability of the approach on real word data.
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[5] Szeidl, L., Várlaki, P.: HOSVD Based Canonical Form for Polytopic
Models of Dynamic Systems, Journal of Advanced Computational Intelli-
gence and Intelligent Informatics, Vol. 13 No. 1, pp. 52–60, 2009, URL:
http://www.fujipress.jp/finder/xslt.php?mode=present&inputfile=JACII001300010007.xml

[6] Roemer, F., Becker, H., Haardt, M., Weis, M.: Analytical Performance Evaluation
for HOSVD-based Parameter Estimation Schemes, 3rd IEEE International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

317
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