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Abstract: In this article, we consider the finite difference method for numerically solving
the Goursat Problem, using uniform Cartesian grids on the square region.
Numerical examples are considered to ensure accuracy of the developed
method on both linear and nonlinear Goursat Problems of second order partial
differential equations. The results obtained for these numerical examples
validate the efficiency and expected fourth order accuracy of the method.
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1. Introduction

The mathematical formulation of physical phenomena in natural sciences and engineering
often leads to an initial value problem of partial differential equations. This type of problem
can be formulated either in terms of first order PDEs or higher order PDEs. The Goursat
problem arises in the study of wave phenomena. The solutions are frequently required in
many applications such as accoustic scattering[1], Sine Gordon [2], electromagnetic theory
[3] and wave equation [4]. Finite difference methods are commonly used to solve the
Goursat problem. In addition to finite difference methods, other methods may be applied to
numerically solve the Goursat problem; for example, heronian mean averaging method [5],
cubature method [6], nonlinear trapezoidal method [7], adomian decomposition method
[8], variational iteration method and references therein.

Developing an efficient and accurate numerical method for solutions for the Goursat
problem is an active research topic. A new fourth order compact finite difference method
for solving the Goursat problem was reported in [9], following the ideas therein.

In this article we consider a novel exponential finite difference approach which precisely
satisfies the initial conditions. The present work is organised as follows. In section
2, we consider the development and derivation of novel exponential finite difference
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approximation for the Goursat problem. A novel finite difference method is presented so
that the resulting difference equation need satisfies the initial conditions exactly. A local
truncation error,convergence and stability of the present method discussed in section 3
and finally, the application of the developed method presented together with illustrative
numerical results have been produced to show the efficiency of the method in section 4. A
discussion and conclusion on the performance of the method are presented in section 5.

2. Derivation of Method

The subject of the present paper is to develop a finite difference method for the numerical
solution of linear and nonlinear Goursat problem which arise in physical phenomena and
applied sciences. For this purpose, we consider the Goursat problem [8],

∂2u

∂x∂y
= f(x,y,u), 0 ≤ x,y ≤ 1 (1)

subject to boundary conditions

u(x,0) = g(x), and u(0,y) = h(y) (2)
g(0) = h(0)

This problem with a different source function f(x,y,u,ux,uy) has been examined by
several numerical methods such as cubature method [6], adomian decomposition method
[8], nonlinear trapezoidal [7], Runge-Kutta method [10], finite difference method [9] and
references therein.

The existence and uniqueness of the solution of the problem (1) is assumed. The specific
assumption on f(x,y,u) to ensure existence and uniqueness will not be considered.

We superimpose on the region of interest a mesh by lines xm = mh, ym = mh,
m = 0,1,2,.....N , with mesh size h = 1/N in x and y directions respectively. For
convenience of notation the following symbolism is used. We denote the nodal point
(xi,yj) as (i,j) and value of the source function f evaluated at the mesh point (xi,yj ,uij)
by fij and similarly we can define other notations in this article. Suppose we have to
determine a number ui+1,j+1, which is a numerical approximation of the theoretical value
of u(xi + h,yj + h), a solution of the problem (1) at the mesh point (xi + h,yj + h).

To derive the method, we consider 9-points (i,j), (i± 1,j), (i,j ± 1) and (i± 1,j ± 1).
Following the idea in [11], we propose an approximation to theoretical solution u(xi +
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h,yj + h) of the problem (1) as an exponential difference method

u(xi + h,yj + h)− u(xi + h,yj − h)− u(xi − h,yj + h) + u(xi − h,yj − h)

= b0h
2f(xi,yj ,u(xi,yj))e

φ(xi+h,yj+h) (3)

where b0 is the unknown constant, φ(xi +h,yj +h) an unknown sufficiently differentiable
function.

Let us define a function F (xi,yj ,u(xi,yj),h) as

F (xi,yj ,u(xi,yj),h) ≡
u(xi + h,yj + h)− u(xi + h,yj − h)− u(xi − h,yj + h) + u(xi − h,yj − h)

− b0h2f(xi,yj ,u(xi,yj))e
φ(xi+h,yj+h) = 0 (4)

By Taylor series expansion of φ(xi + h,yj + h) about mesh point (xi,yj), we have

φ(xi + h,yj + h) = φij + h(φxij + φyij) +
h2

2
(φxxij + 2φxyij + φyyij) +O(h3)

(5)

where φ(xi,yj) = φij , (∂φ∂x )ij = φxij ,......etc.. The expression (5) will provide an O(h3)

approximation for the function eφ(xi+h,yj+h).
So, we have

eφ(xi+h,yj+h) = 1 + φij + h(φxij + φyij) +
h2

2
(φxxij + 2φxyij + φyyij)

+
1

2
{φ2ij + h2(φxij + φyij)

2 + 2hφij(φxij + φyij)

+ h2φij(φxxij + 2φxyij + φyyij)}+O(h3) (6)

In order to determine a constant and φ(xi + h,yj + h), by the Taylor series expansion
of the function u(x,y) about the mesh point(xi,yj) and using notations defined above,
from(4) we will write the expansion as

Fij(x,y,u,h) ≡ h2(4(uxy)ij−b0(1+φij+
1

2
φ2ij)fij)−b0h3(1+φij)(φxij+φyij)fij

+h4(
2

3
(uxxxy +uxyyy)ij−

1

2
b0((φxij +φyij)

2 + (1+φij)(φxxij + 2φxyij +φyyij))fij

= 0 (7)

where ∂2u
∂x∂y = uxy , ∂4u

∂x3∂y = uxxxy , etc...
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Comparing the coefficients of hp, p = 2,3,4 in (7) and using the fact that uxyij = fij
from (1), we will have following system of nonlinear equations

b0(1 + φij +
1

2
φ2ij) = 4 (8)

b0(1 + φij)(φxij + φyij)fij = 0

1

2
b0((φxij + φyij)

2 + (1 + φij)(φxxij + 2φxyij + φyyij))fij

=
2

3
(uxxxyij + uxyyyij)

To simplify the calculation and solving the system of equations (8), let us assume φij = 0 ,
φxij = 0 and φyij = 0. So we will get

b0 = 4 (9)

φxxij + 2φxyij + φyyij =
1

3fij
(uxxxy + uxyyy)ij (10)

On Substitution of the values of φij , φxij , φyij and φxxij + 2φxyij + φyyij in (5), and
assuming the negligible contribution of the terms with O(h3), we have

φ(xi + h,yj + h) =
h2

6fij
(uxxxy + uxyyy)ij (11)

Finally substituting the values of b0 and φ(xi + h,yj + h) from (9-10) in (4), we will
obtain the expression

u(xi + h,yj + h)− u(xi + h,yj − h)− u(xi − h,yj + h) + u(xi − h,yj − h)

= 4h2f(xi,yj ,u(xi,yj))e
h2(uxxxy+uxyyy)ij

6fij (12)

This is an explicit method which is at least O(h4) accurate. The source function f plays
an important role in approximation of the terms uxxxy and uxyyy in (11). However, we
have used only a discrete approximation for these terms. First we have substituted fxx
and fyy for the terms uxxxy and uxyyy respectively. Thus we have obtained our compact
exponential finite difference method

ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1 = 4h2fije
h2(fxx+fyy)ij

6fij (13)
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where ui+1,j+1 is an approximate value of the theoretical value of u(xi + h,yj + h) ,..etc.
For the computational purpose reported in section 4, we have used second order finite
difference approximations for the terms fxx and fyy i.e.

(fxx)ij =
fi+1,j − 2fij + fi−1,j

h2
(14)

(fyy)ij =
fi,j+1 − 2fij + fi,j−1

h2

To compute initial values in (13), we have the following algorithm reported in [9],

ui,j = ui,j−1 + ui−1,j − ui−1,j−1 +
h2

4
(fi,j + fi,j−1 + fi−1,j + fi−1,j−1) (15)

3. The Local truncation error , Convergence and Stability Analysis

In this section, we consider the error associated with the proposed method (12. Let
u(x,y) be the solution of problem (1) six times continuously differentiable in the domain
[0,a] × [0,a]. Let Tij be the truncation error in the proposed difference method (12) at
mesh point (i,j) which may be defined as in [12] and we can write as

Tij = ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1 − 4h2fije
h2(fxx+fyy)ij

6fij

=
h6

90
(3

∂6u

∂x5∂y
+ 10

∂6u

∂x3∂y3
+ 3

∂6u

∂x∂y5
− 5

f
(
∂4u

∂x3∂y
+

∂4u

∂x∂y3
)2)ij (16)

Thus the order of the method (12) is four. Let us define error equation for difference
method (12) as

εi+1,j+1 − εi+1,j−1 − εi−1,j+1 + εi−1,j−1

= 4h2(f(xi,yj ,u(xi,yj))− f(xi,yj ,uij)) +O(h6)

where εij = u(xi,yj)− uij . Using mean value theorem we have

εi+1,j+1 + εi−1,j−1 = εi+1,j−1 + εi−1,j+1 + 4h2εij(
∂f

∂u
)ij +O(h6) (17)

Let us define Ej+1, the maximal error on the (j + 1)th level i.e.

Ej+1 = max
i
|εi,j+1|
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Thus from (16), we have

max
i
|Ej+1 + Ej−1| ≤ max

i
|Ej+1 + Ej−1|+ 4h2|Ej |

∣∣∣∣(∂f∂u )ij

∣∣∣∣ +O(h6)

Thus as h→ 0

4h2|Ej |
∣∣∣∣(∂f∂u )ij

∣∣∣∣ = 0

Thus the method (12) converges. The numerical solution will contain roundoff error and
let ε̄ij be the roundoff error defined as

ūij = uij + ε̄ij

Since a difference equation governs the prorogation of errors, it is possible to write (16) as

ε̄i+1,j+1 + ε̄i−1,j−1 = ε̄i+1,j−1 + ε̄i−1,j+1 + 4h2ε̄ij(
∂f

∂u
)ij (18)

For the difference equations with constant coefficients, the error may be expanded in a
finite Fourier series [12]. Thus if the source function, f is linear and defined ε̄m,n, as in
[12].

ε̄m,n = Ae(iβmh)ξn

where β is real number and A is an arbitrary constant. So the equation (17) may be written
as

ξ2(e(2iβh) − 1)− 4h2e(iβh)
∂f

∂u
ξ − (e(2iβh) − 1) = 0 (19)

To simplify the equation (18), we have

ξ2 + 2h2 csc(βh) cot(βh)
∂f

∂u
ξ − 1 = 0 (20)

ξ2 − 2h2 sec(βh)
∂f

∂u
ξ − 1 = 0

The number ξ is called the amplification factor of the difference method. The method is
stable iff |ξ| ≤ 1. If source function f has arguments x and y only, then we see that the
method is stable for all β. On solving (19), we conclude that the difference method (12) is
stable if ∂f∂u > 0 then β ∈ (π2 ,

3π
2 ) and if ∂f∂u < 0 then β < π

2 .
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4. Numerical experiment

To illustrate our method and demonstrate its computational efficiency, we will consider the
examples discussed in [8, 10], in which the errors taken to be the maximum absolute error
i.e.

MAU = max
2≤i,j≤N

|u(xi,yj)− uij |

We have used Newton-Raphson iteration method to compute the values in (14). All com-
putations in the experiment were performed on MS Window 2007 professional operating
system in the GNU FORTRAN environment version -99 compiler(2.95 of gcc) running on
Intel Duo core 2.20 Ghz PC. The solutions are computed on (N − 1)2 nodes, in compu-
tation of initial value iterations continued until either maximum difference between two
iterates is less than 10−9 or number of iterations reached 103.
Problem 1. Consider a nonlinear problem discussed in [10]which,when solving consists
of

uxy = e(2u)

in the region [0,1] × [0,1] with the boundary conditions u(x,0) = x/2 − log(1 + ex),
u(0,y) = y/2 − log(1 + ey), for which the analytical solution is found to be u(x,y) =
(x+ y)/2− log(ex + ey). For sake of comparison, we have computed the solution by the
method in [13]. We have presented MAU by the present method (12) and method in [13],
for different values of N in Table 1.
Problem 2. Consider a linear problem discussed in [8]which,when solving consists of

uxy = u

in the region [0,2] × [0,2] with the boundary conditions u(x,0) = ex, u(0,y) = ey, for
which the analytical solution is found to be u(x,y) = e(x+y). We have computed MAU
by the present method (12) and the method in [13]. The computed MAU for both methods,
for different values of N presented in Table 2.

Table 1. Maximum absolute error in u(x,y) = (x+ y)/2− log(ex/2 + ey/2) for problem
1.

MAU
N

4 8 16 32

(12) .36221743(-3) .53644180(-4) .67353249(-5) .15497208(-5)

[13] .61531067(-1) .74501038(-2) .11291504(-2) .37765503(-3)
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Table 2. Maximum absolute error in u(x,y) = e(x+y) for problem 2 .

MAU
N

4 8 16 32 64 128

(12) .24116898(0) .31757355(-1) .41389465(-2) .52642822(-3) .80108643(-4) .53405762(-4)

[13] .57629776(0) .61531067(-1) .74501038(-2) .11291504(-2) .37765503(-3) .72517395(-2)

5. Conclusion

In general, each numerical method has its own advantages and disadvantages of use.
The present method is therefore good for use under the initial conditions. The major
disadvantage of this method is in computation of nonlinear initial values.Our fourth
order exponential finite difference method seems competitive with other finite difference
methods.The decision to use a certain difference method does not depend on the given order
of the method but also its computational efficiency. The numerical results for problems
show that method is computational efficient. Also it is observed from the results that
method has higher accuracy i.e smaller concretization error.

In the present article a different form of a high order method has been derived on the
basis of exponential function. We have studied the accuracy and theoretical aspect of a
developed finite difference method for numerical solutions of the Goursat problem.The
development of this exponential method will lead to a possibility to approximate higher
order derivatives in term of the power of lower order derivatives of solutions, to raise the
order and accuracy of the method. Work in this direction is in progress.
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