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Abstract:  In this paper we formulate and prove statements about the fulfillment of the
fuzzy generalization of the De Morgan identities in cases of different t-norms,
t-conorms and negations. In the proofs of the statements implicitly we propose
methods to give uncountable infinitely many other norms and negations for a
given norm, for which the triplets fulfill: none of the identities, exactly one of
them, or both of them.
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1. Imtroduction

The well-known De Morgan identities take a fundamental part of the basic knowledge
of set theory (and logic). It is unnecessary to mention that their use can be noticed in
countless places. In crisp (traditional) set theory these identities are generally true. (This is
the reason they are also called De Morgan’s laws.)

In case of all I/ universe in crisp set theory the De Morgan identities are fulfilled for
arbitrary A,B C 4, and have the following forms [1]:

AUB=AnNE  (disjunctive De Morgan identity)

ANB=AUBRB (conjunctive De Morgan identity)

In crisp set theory a set X can be defined by its characteristic function xx : U — {0,1} as
follows [1]: Vz eld:

1 ,ifzeX
xx(@) = { 0 ,ifzgX

1Research supported by National Scientific Research Fund Grant OTKA T048832.
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Since two sets (X and Y') are equal in crisp case if and only if Vzeld: xx(z) = xy(z),
where xx and xy are the characteristic functions of X and Y, respectively [1], the
previous identities can be written in the subsequent forms for arbitrary A,B C U:

Veel: xaup(e) = co(ue(xal®)xp(2))) = iclcc(xalz)),ce(xB(2))) = x7-5(%)

Vzel: xzrp(e) = colic(xa(@)xB(2)) = volce(xa(@)),cc(xs())) = xz,5(®)

where ., u., and ¢, denote crisp intersection operator, crisp union operator, and crisp
complement function respectively, hence i, : {0,1} x {0,1} ~ {0,1}, uc: {0,1} x
{0,1} — {0,1} and ¢.: {0,1} — {0,1}, furthermore:

) 1 Jifz=y=1
te(z,y) = { 0 , otherwise

0 Lifz=y=0
ue(zy) = { 1, otherwise

0 ,ifx=1
cl®) =11 'iz—0

Fuzzy set theory [2] is a generalization of crisp set theory. It generalizes the characteristic
functions and the operations on sets as well.

In fuzzy set theory a set X can be defined by its membership function (generalized
characteristic function) px : U — [0,1] [3]. Two fuzzy sets (X and Y') are equal if and
only if Veeld: px(z) = py(z), where px and py are the membership functions of X
and Y, respectively [3].

The fuzzy generalizations of crisp intersection, union and complement are all of those
functions whose forms are ¢: [0,1] x [0,1] — [0,1], s: [0,1] x [0,1] = [0,1], n: [0,1] =
[0,1] respectively, and fulfill the following axioms [3, 4, 5:

e t-norm (fuzzy intersection):
i. boundary condition: Yz €[0,1]: t(z,1) =z,
ii. monotonicity: Vz,y1,y2 €[0,1]: if y1 < yo thent(z,y1) < tH{z,y2),
iii. commutativity: Vz,y € [0,1]: t(z,y) = t(y,2),
iv. associativity: Vz,y,z€[0,1]: t(t(z,y),2) = t(z,t(y,2)),
e t-conorm (fuzzy union):
i. boundary condition: Vz€10,1]: s(z,0) = =,
ii. monotonicity: Vz,y1,y2 €[0,1]: if y1 < ya then s(z,y1) < s(z,y2),
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lii. commutativity: Vz,y € [0,1]: s(z,y) = s(y,z),
iv. associativity: Vz,y,2€[0,1]: s(s(z,y),2) = s(z,5(y,2)),
e negation (fuzzy complement):
i. boundary conditions: n(0) = 1 and n(1) = 0,
ii. monotonicity: Vz,y€[0,1]: if z < y then n(z) > n(y).

Some examples for fuzzy t-norms, t-conorms and negations [3, 4]:
& {-norms:
standard (or Zadeh) t-norm: Vz,y € [0,1]: t(z,y) = min(z,y)
algebraic t-norm: Vz,y€[0,1]: t(z,y) = zy
Lukasiewicz t-norm: Va,y € [0,1]: t(z,y) = maz(z +y — 1,0)
nilpotent minimum: Vz,y € [0,1]:

| min(zy) ifzxty>1
Hzy) = { 0 , otherwise

drastic t-norm: Vz,y € [0,1]:

z ,ify=1
Hey) =< y ,ifx=1
0 , otherwise
® t-conorms:

standard (or Zadeh) t-conorm: Vz,y €[0,1]: s(z,y) = maz(z,y)
algebraic t-conorm: Y,y € [0,1]: s(2y) =z +y — zy
Lukasiewicz t-conorm: Y,y €[0,1]: i(z,y) = min(z + y,1)
nilpotent maximum: Vz,y€[0,1]:

| mazx(zy) ,ifzt+y<l1
s(@.y) = { 1 , otherwise

drastic t-conorm: Vz,y € [0,1]:
z ,ify=0

sley)=<¢ y ,ifz=0
1, otherwise
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® negations:
standard (or Zadeh) negation: Vz €[0,1]: n(z)=1—=z

intuitionistic negation:

(1 Lifz=0
“ 10 Lifze(0,1]

dual intuitionistic negation:
1 Lifzelo)
M@‘{o,ﬁz:1
(Apparently arbitrary t-norm, t-conorm and negation can be combined in a triplet.)

On the basis of the previous generalizations, for arbitrary fuzzy sets A, B C U, the fuzzy
generalization of the De Morgan identities are:

Vezel: pgglz) = n(s(pa(z),up(x))) = tin(palz)),n(us(2))) = pz-5()
Veel: pg=p(z) = n(t(pa(z),up () = s(n(pa(z)),n(pp () = pz_5(z)

Since A and B are arbitrary fuzzy sets, pa(z) and pp(x) can take any value from the
interval [0,1] for all x €l{. Thus the identities can be written in the following forms [3]:

vz,yel0,1]: n(s(z,y)) = tn(z)n(y))  (disjunctive De Morgan identity)

Vz,yel0,1]: n(t(z,y)) = s(n(z),n(y)) (conjunctive De Morgan identity)
Because of the fact that there are uncountable infinitely many ways for the definition of
t-norm, t-conorm and negation triplet, in fuzzy set theory the situation about the fulfillment

of the De Morgan identities is more complicated than in crisp case. It is far from being
obvious that the identities are fulfilled for arbitrary triplets.

The case of involutive negations has already been studied in [6]. The main resuli can be
formulated as follows:

If the negation is involutive (Yz € [0,1]: n(z) = n~1(z)), then in case of an arbitrary
t-norm and t-conorm pair, none or both of the De Morgan identities are fulfilled.

The proof is not so difficult:
Assume that Vz,y € [0,1] : n(s(z,y)) = t(n(z),n(y)), one of the identities is fulfilled.
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Then Vz,y €[0,1]: s(z,y) = n~!(t(n(z),n(y))). Since Yz€[0,1]: n(n(z)) = z (involu-
tive property), ¥z,y € [0,1]: s(n(z),n(y)) = n~! (t(n(n(z)),n(n(y)))) = n(t(zy)). We
got the other identity, too.

(The proof is similar when it is assumed at the beginning that the latter identity is fulfilled.)

The aim of this article is to investigate the behavior of the identities in case of different
t-norm, t-conorm and negation triplets, where the negation is not involutive.

In the next section statements about the fulfillment of these generalized identities will be
formulated and proved. The fulfillment depends on the properties of the chosen t-norm,
t-conorm and negation we apply. There are triplets which fulfill:

e none of the identities,
e exactly one of them,
e both of them.

In the third section an example will be given when exactly one of the identities is fulfilled.
Finally, in the last section we summarize the paper and point at the unsolved problematic
cases whose solution can be the object of further research.

2. Theorems

Definition 1. A t-norm t is idempotent [3, 4, 5] if V2 € [0,1]: t(z,z) = 2. Similarly, a
t-conorm s is idempotent if Vz €(0,1]: s(z,z) = 2.

According to [7] the only idempotent t-norm is the standard t-norm. Similarly, the only
idempotent t-conorm is the standard t-conorm.

Definition 2. A t-norm t is positive [4] if Vz,y€(0,1]: t(z,y) > 0. Similarly, a t-conorm
s is positive if Vz,y€[0,1): s(z,y) < 1.

Definition 3. A negation n is strict [4] if it is strictly monotonic and continuous in [0,1].
Theorem 1. If the standard t-norm (t-conorm) is given, then no t-conorm (t-norm) and

strict negation pair can be found, for which the triplet fulfills exactly one De Morgan
identity.

Proof. Let us devide the possibilities into two cases:

a, Consider the case of the given standard t-norm (¢(z,y) = min(z,y)), when the t-
conorm is also the standard one (s(z,y) = maz(z,y)) and the negation is arbitrary.
With the assumption = < y, n(z) > n(y) stands, because of the monotonicity of the
negation. Therefore we get the following equations:
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n(s(z,y)) = n(maz(z,y)) = nly) = min(n(z),n(y)) = t(n(z),n(y))
Similarly with the assumption z > y.
Thus, we got n(s(z,y)) = t(n(z),n(y)), one De Morgan identity.
Similarly we can get the other identity, too.

b, In case of the given standard t-norm, when the t-conorm is not the standard one and
the negation is arbitrary, but strict, i.e. strictly monotonic and continuous (therefore
bijective [8]):

e Jdac[0,1]: n(s(z,z)) # n(z) = t(n(z),n(x)), otherwise s would be idempo-
tent, hence s would be the standard t-conorm. Thus there exists z,y € [0,1] :

n(s(z,y)) # t(n(z)n(y)).
o Jxe(0,1]: n(t(z,x)) = n(z) # s(n(z),n(z)), otherwise s would be idempo-
tent, hence s would be the standard t-conorm. Thus there exists z,y € [0,1]

n(t(z.y)) # s(n(z)n(y)).

Therefore none of the identities are fulfilled.

Thus, neither of the De Morgan identities, or both of them are fulfilled for given standard
t-norm, if the negation can only be strict. The proof is similar for given standard t-
conorm. |

Theorem 2. If the standard t-norm (t-conorm) is given, then uncountable infinitely many
t-conorm (t-norm) and negation pairs can be found, for which the triplets fulfill exactly
one De Morgan identity.

Proof. Letz*€(0,1) and

| maz(zy) ,ifzel0,2*] orye(0,z*]
s(z,y) ‘“{ 1 Lifzye (2%,1]

(See Figure 1.)

The previous function is a t-conorm, because:
i. boundary condition: s(z,0) = maz(z,0) = =z,
ii. monotonicity: if y; < yo then:

e s(z,y1) = maz(z,y1) < maz(z,y2) = s(2,y2),
if z€[0,2*] or y1,y2 € [0,2*],

o s(zy1) = maz(zy;) < 1= s(z,y2),
lfyl € {Oam*] and T, € (1‘*71]:
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e s(zy1) =1<1=s(z,y9),
if z,y1,y2 € (2*,1],

ili. commutativity:
o s(zy) = maa(z,y) = maz(yz) = s(y,z),
ifzel0,2* orye[0,2*],
¢ s(zy)=1=s(yz),
ifzye(z*1],
iv. associativity:
¢ s(s(z,y),2) = maz(maz(z,y)z) = maz(z,y,z) = maz(z,maz(y,z)) =
s(z,s(y,2)),
fzyel0z* orz,z€[0,2*]ory,z € [0,2%]
(this includes the case when z,y,z € [0,z*)),

o s(s(z,y).2) =maz(l,z)=1= s(zy) = s(zmaz(y,z)) = s(z,8(y,2)),
if z€[0,2*], but z,y € (2*,1],

o s(s(z,y),2) = s(maz(z,y),2) = s(y,2) = 1 = mazx(x,1) = s(z,s(y,z)),

SIX X/
stoy)
.Y* »
0 a¥ b X

Figure 1: Main diagonal cross section of the enveloping cube of the graph of s(zy) (in
Theorem 2)
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ifze[0,2%], buty,z€ (z*,1],
b

o (s(2.9),7) = s(maz(ay),?) = 5(2,2) = s(z;maz(y,2) = s(,5(,2)),
1fy€[()¢ |, but z,z € (z*,1],

o s(s(zy),2) = s(1,2) = 1 = s(z,1) = s(z,5(y,2)),

)=
ifz,y,2€(z*,1].

Let

1= ifzel02¥]
71(115) = { 0 v ,'lf:CE(JI*,”

(See Figure 2.)
The previous function is a negation, because:
i. boundary conditions: n(0) = 1 as well as n(1) = 0,
il. monotonicity: Vz,y€[0,1] where z < y : n(z) > n{y).

Under the assumption z < y, n{z) > n(y) stands, because of the monotonic decreasing
property of the negation. Therefore we get the following equations:

yiilx)

n{x)

0 ¥ x* I X

- Figure 2: Graph of n(z) (in Theorem 2 and 3)
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¢ n(s(zy)) = n(maz(zy)) = nly) = min(n(z),n(y)) = t(n(z)n(y), ifze
[0,2*] or y€[0,2*]

o n(s(z)) = n(1) = 0 = n(y) = n(x) = min(n(z)n()) = tnlz)nly), if
zye(z*1].

Similarly, with the assumption = > y. Thus Vz,y €[0,1]: n(s(z,y)) = t(n(z),n(y)), one
De Morgan identity is fulfilled.

Since the negation is monotonic and decreasing:

2

VxE(O,:E* _$*2): ¥ =1 ~— (1 _x*) =1 x*;*z*
n(0) = 1, therefore

Vze (02" —2*?): s(n(z)n(z)) =1 # n(z) = n(min(z,z)) = n(t(z,z)), thus

Jz,y € [0,1] © n(t(zy)) # s(n(z),n(y)), the other De Morgan identity is not
fulfilled.

= n(z* —z*?) < n(z) <

Since z* can take continuum many values from the interval (0,1), we obtained uncountable
infinitely many solutions. The proof is similar for given standard t-conorm. ]

Theorem 3. [f the drastic t-norm (t-conorm) is given, then uncountable infinitely many
t-conorm (t-norm) and negation pairs can be found, for which the triplets fulfill exactly
one De Morgan identity.

Proof. Let s(z,y) be the drastic t-conorm, z* € (0,1) and

n(z) = { O—- = ifzel0,z*]

‘ ifze(z*,1]
(See Figure 2.)

The previous function is a negation, as it was explained in Theorem 2. Then the following
are hold true:

o Vz,y€(0,1]: n(s(z,y)) = n(l) = 0 = t(n(z)n(y)),
e Vze[0,1]: n(s(z,0)) = n(z) =t(n(z),1) = t(n(z),n(0)).

Therefore Va,y € [0,1] 1 n(s(z,y)) = t(n(z),n(y)), one De Morgan identity is indeed
fulfilled.
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However, Yy € (0,1) 1 n(t(z",y)) = n(0) = 1 # n(y) = s(0,n(y)) = s(n(z*),n(y)).
As aresult, 3z,y€ [0,1]: n(t(z,y)) # s(n(z),n(y)), the other De Morgan identity is not
fulfilled.

Since z* can take continuum many values from the interval (0,1), we got uncountable
infinitely many solutions. The proof is similar for given drastic t-conorm. O

Definition 4. If n is a negation, then x € [0,1] is a fix point [9] if n(z) = =.

Definition 5. If n is a negation, then n is expanding [9] if Yz €[0,1]: t(n(z),n(n(z))) <
z < s(n(z),n(n(z))).

According to [9], a bijective negation n with fixed point zg is expanding if and only if
there exists an involutive negation N such that Vz €[0,1]:

N(z) <nl(z),ifz < 2o
N(z) = n(z),ifz =z
N(z) > n(z),ifz > o
Definition 6. Let us say that this function is strictly expanding if:
N(z) = n(z), iff € {0,20,1}
(See Figure 3.)

Theorem 4. If a t-norm (t-conorm) is given, for which Jy* € (0,1) : t(y*,y*) € (0,y*)
(in case of t-conorm: Jy* € (0,1): s(y*,y*) € (v*,1)), then uncountable infinitely many
t-conorm (t-norm) and negation pairs can be found, for which the triplets fulfill exactly
one De Morgan identity.

Proof. Letn be an arbitrary strictly expanding negation that has a fix point at y*. If we
prove that such a t-conorm can be found for n, so that this pair with the given t-norm
fulfills exactly one De Morgan identity, we prove the statement, because it is clear, that
there are uncountable infinitely many strictly expanding negations which have a fix point
at y*.

An example for generating continuum many piecewise linear strictly expanding negations
n which have a fix point at y*:

* * *

yr—1 y y
= 1 =
filz) == " + fo() S + T
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( yry * -
m(:zt):xfl_(;g__ljtlzxyp—;}qtl Jifze0,4-]
*_ ? u* * u* X *
my(z) = 2P 4 (-t L = e (Y]
2
n(:(:) = fg(ﬁ?i#)__y* _{?(%ﬂ)‘y* .t
n3(z) = st + (y* — Y L) = ..., ifze(y*,
b} 2
—_ y¥+1 X yr1 . *
ng(z) =z nﬁy(,urf ) nsg*fl )= ,lfxe(lg—r—l,lj
2 2

where p is a parameter and p > 1 (so it can take continuum many values). (See Figure 4.)

Let s(z,y) := n~'(t(n(z),n(y))) (since n is invertible, we have n™!), then s(z,y) is a
t-conorm, because:

1. boundary condition: s(z,0) = n~(¢t(n(z),1)) = n~(n(z)) = =
ii. monotonicity: if y; < v then:
n(y1) > n(y;), because » is monotonic decreasing,
t(n(z),n(y1)) > t(n(x),n(y2)), because ¢ is monotonic increasing,

s(@y1) = n7 (t(n(z)n(y1)) < vt (n(2),n(y2))) = s(z,y2), because
n~! is monotonic decreasing (since if it was not, i.e. 321,22 € [0,1]: 21 < 29

Hix:’

) .

Figure 3: A strictly expanding negation (n) with its fix point (y*) and its inverse
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and n=1(z1) < n~l(zy) stood, considering that n is monotonic decreasing,
z1 = n(n"(z1)) > n(n"(21)) = 22 would also be true)

lii. commutativity: s(z,y) = n=1(t(n(x),n(y))) = n~(t(n(y),n(z))) = s(y,z)
iv. associativity:

s(s(z.y),2) = n=H(t(n(n" 1(t(n(33)7n(y))))’n(zl))

= (t(n(2),t(n(y),n(2)))) = n= (t(n(z),n(n "

) = n=Ht(t(n(2),n(y)),n(2))) =
t{nly)n(2))) = s(z,s(y,2))

One De Morgan identity is fulfilled, because s(z,y) = n~(t(n(z),n(y))) if and only if
n(s(z,y)) = t(n(z),n(y)). (Remember that » is invertible.)

Assume that the other identity is also fulfilled:

Ve €(0.1]: ni(zy)) = s(n(2)n(y)) = n~ ' Hn(n(z)),n(n(y)))), iff
Vz,y€[0,1]: n(n(t(z,y))) = t(n(n(z)),n(n(y))), then

n(n(H{y* ")) = t(n(n(y*)),n(n(y*))), then

a(n(t(y*y*))) = tly*y*), because n(n(y*)) = n(y*) = y*.

iRy,

Y Py

Figure 4: Graph of a piecewise linear strictly expanding negation
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However, since n is strictly expanding:
Vze(0,4*): nl(z) < N~1(z), because
if3z€(0,y*): n Y z) > N~Yz) stood,
Jze(0,y*): z=n(n"(2)) <n(N~(z)) < N N~Yz)) =z, ie.
« < z would also be true, since Vz € (0,y*): N~™'(z)e (y*,1).

Thus:
Vee(0,y*): n(z) > N(z) = N~Hz) > nl(2), ie.
Vre(0,y%): n(z) > n~'(zx), hence
Yz e (0,5"): n(n(z)) < z (because n is strictly monotonic), thus
n{n(t(y*,y*))) < t(y*,y*), since t(y*,y*) € (0,4*) stands.
(See Figure 5.)

Xy

!

nin

Figure 5: Graph of n(n(z)) (in Theorem 4)
That is a comtradiction.

Therefore exactly one De Morgan identity is fulfilled. The proof is similar for given
t-conorms. O
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Corollary 1. If a t-norm (t-conorm) is given that has at least one of the following proper-
ties:

e continuity (at least in one variable)
e strictly monotonicity
® positivity

then uncountable infinitely many 1-conorm (t-norm) and negation pairs can be found, for
which the triplets fulfill exactly one De Morgan identity.

Proof. 1t can be easily seen that such a norm is either the standard one or the drastic one
or for such a t-norm Jy* € (0,1) : t(y*,y*) € (0,4*) (in case of t-conorm: Jy* € (0,1):
s(y* )€y, 1). O

3. An example

Example 1. Now let us see an example for a t-norm, t-conorm and negation triplet, which
Julfills exactly one De Morgan identity.

Let Vz,y €[0,1]: t(z,y) := xy (the algebraic t-norm) and Vz € [0,1]: n(z) = (z — 1)2
Then Vz€(0,1]: n™1(z) = 1 — \/z, furthermore 7 is a negation, because:

i. boundary conditions: n(0) = 1 as well as n(1) = 0,

ii. monotonicity: if z < y thenVz,y € [0,1]: n(z) = (z-1)2 = (1-2)? > (1 —-y)? =
(y —1)* = n(y).

After this we can get the proper t-conorm as it is shown in Theorem 4:

s(y) = n Htn(z)n(y) =1 -/ (z-12y-12=1~|z -1y - 1] =
l-(1-2)(1-y)=2+y—zy.

Apparently this is a t-conorm (accurately the algebraic t-conorm) and the triplet we got
fulfills one De Morgan identity.

Assume that the other identity is also fulfilled:
Vz,yel0,1]: s(n(z),n(y)) = n(t(z,y)), thus
Vrzyel0): (2 -1+ (y—1)° = (z - 1)’ (y = 1)? = (zy — 1)%.

After multiplying and contracting we obtain:
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Va,y€[0,1]: 2%¢® — 22y — zy? + zy = 0.

However:

22y? — 2%y — 2y + 2y = 0 only if ze{0,1} orye{0,1}.

Therefore we have a contradiction. Hence we showed a triplet, which fulfills exactly one
De Morgan identity.

4. Conclusion

The meaning of the above proved statements can be summarized as follows:

L. For every given t-norm (t-conorm) can be found uncountable infinitely many t-conorm
(t-norm) and negation pairs, for which the triplets:

e do not fulfill any of the De Morgan identities. Namely, for a given standard
norm we choose a non-standard norm and an arbitrary strict negation; for a given
non-standard norm we choose a standard norm and an arbitrary strict negation.
(See Theorem 1.)

e fulfill both of the De Morgan identities. Namely, we choose an arbitrary invo-
lutive negation and a t-conorm, that is calculated as shown in Theorem 4. (See
[61.)

II. For the standard, for the drastic, further for all such t-norms (t-conorms), where
Jy*€(0,1): t(y*,y*) €(0,y*) (in case of t-conorm: Jy* €(0,1): s(y*,y*) € (y*,1))
~ these covers both the cases when the t-norm (t-conorm) is continuous, or strictly
monotonic, or positive (see Corollary 1) — can be found uncountable infinitely many
t-conorm (t-norm) and negation pairs, for which the triplets:

e fulfill exactly one De Morgan identity. (See Theorem 2, 3 and 4.)

However, there are so-called problematic cases (see Figure 6), which are not covered by
the statements. If the given t-norm (t-conorm) is not the standard one and is not the drastic
one, further Ay* € (0,1): ¢(y*,y*) € (0,4*) (in case of t-conorm: FAy* € (0,1): s(y*,y*)€
(y*,1)), then the statements do not answer the question: can any t-conorm (t-norm) and
negation pair be found, for which the triplet fulfills exactly one De Morgan identity?

(It is easy to prove, that there are uncountable infinitely many problematic cases.)

Further research may aim at finding an answer to the previous question.
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Figure 6: Main diagonal cross sections of the enveloping cubes of the graphs of the
so-called problematic norms (in the Conclusion)
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