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Abstract: An emulated digital Cellular Neural Network (CNN) Universal Machine
chip was designed by a research group of Analogic and Neural Computing
Systems Laboratory of HAS, almost 10 years ago. During the design period
of the chip, particular attention had to be paid to the clocking and control
system of the chip, since each architecture element, placed on a large silicon
area chip (1 cm’), operated in a totally synchonous mode, using a single
global clock. The designer’s manipulations for eliminating the consequences
of the too high propagation delay of long interconnections resulted in a
relatively large chip, and a significant part of the chip was totally
superfluous from the point of view of logical operation. The clock rate was
limited at a lower level than it would have been possible without the long
interconnections. So the development of ‘CASTLE’ CNN processor array
showed the most significant problems of the submicron VLSI, which arose
from the too long interconnections of big size chips.

The elimination of clocking problems and the re-designing of the CASTLE
architecture using delay-insensitive, self-synchronized, asynchronous logic
elements were performed. The result of the re-designing work, which is
presented in this paper, is a clockless, totally asynchronous architecture. The
combination of the DUAL-RAIL logic and the methods of the well known 4-
phase asynchronous inter-register communication were chosen. Obviously
the timing and control unit of the synchronous version is unnecessary in the
asynchronous one. So the tasks of re-designing several synchronous units to
their dual-rail versions consisted in designing an application specific dual-
rail arithmetic unit with feedback and dual-rail multidirection FIFOs.
Several new dual rail logic elements were introduced, which were modeled
and simulated as follows:
e Two-input dual-rail register with a common acknowledge output and
priority order for inputs
e Two- or more-input dual rail register with independent acknowledge
outputs and dual-rail selection inputs
e Dual-rail register with CLEAR single-rail control inputs, which
enable setting the register into so called DATA-TOKEN and
BUBBLE states.
The lecture presents the most interesting parts of the design process.
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1. Introduction: Experiments of designing a synchronous CNN processor
array

The architecture of a VLSI chip containing a sub-array of digital CNN processors was
published in 1999. [2], [11]. The chip operated with a two-phase global clock, so it
demanded a very careful design of the central timing and control unit (TAC), which
were based on a synchronous FSM. The cause of the difficulties is that the time delay of
the relatively long metal interconnections exceeded the delay time of the logic gates in
the applied submicron CMOS technology. A relatively large silicon area had to be
sacrificed for the synchronity of the clock and the control signals in the different points
of the chip.

The problem of clocking, which had to be solved 10 years ago, became the primary
obstacle to the future development of VLSI technology. There are several concepts and
methods intended to solve the clocking problem, as follows:

e The system consists of smaller synchronous units, which communicate
asynchronously [3], [5],[6]

e Application of Delay Locked Loop (DLL) circuits to insert the required value
additional delay into the paths of the clock signal [10].

e Application of asynchronous units which communicate asyncronously [1],[4],

(71, (8], [9].

The re-designing of the former CNN processor architecture ‘CASTLE’ will be
discussed in detail in this paper.

2. Dual-Rail asynchronous digital circuits and systems

The dual-rail asynchronous circuits and systems are based on two principles, as follows:

e  The principle of 4-phase hand-shake communication.

The background of the classical four-phase handshaking asynchronous
communication is that the data on the output of the transmitter (sender) has to be
ready before the signal 'request’ rises. The idea is that the code of the output
datum itself contains the request. The dual-rail codes can contain it. The
application of this principle leads to the asynchronous inter-register
communication of the dual-rail sytems.

e  The principle of logic completeness.

It is supported by the dual-rail code of logical variables. Logic completeness
means that a function unit should only give a valid output datum if it has valid
data on all of its inputs, and should only switch its output to invalid, if all its
inputs have turned invalid. It follows from this that a logic decision is valid and
transmissible only, if all the premises necessary for it are valid. This enables
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hazard-free logic implementations. A network consisting of such units bears the
ability of self-synchronization, that is the data validated by specific, valid input
data in a given time will not mix with those validated by the input data of a
different time.

If two wires are ordered to one logic variable, it is possible to distinguish valid and
invalid logic values. The value of the variable is valid, if the levels of wires are (L H) or
(H L). The value of the variable is invalid, if both wires are at low level (L L). The
convention is that a valid datum contains a request.

Dual-rail (DR) registers can be easily built up from the C-elements, which are
introduced by Miiller at the end of 50’ths. The simplest Miiller element, the C-2 is
shown in Figure 1. The DR-LATCH consisting of C-2 elements and the symbol of a
DR-register are shown in the Figure 2.
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Figure 2. Scheme of a Dual-Rail latch and the symbol of Dual-Rail register
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3. R-T level architecture of the synchronous CASTLE processor

The name of the architecture of the core processor of the fully synchronous array was a
made-up name ‘CASTLE’.

The operation of CASTLE was derived from the “full-signal-range model” of the CNN
state-equations using the simplest forward Euler integration form:

x(ntl) = Z A g Fx() + g
CkeN,(1,)

8~ Z By * uy(n) +h * z;
C(kheN 4,5

Here & is the time step, uy, are the inputs, x;(n+/) is the next state of the cell(i,j) before
truncation, xy(n) are the current states of the neighbouring cells, g;; and z; are constants,
supposing a constant input, and 4’ and B’ are the so called modified template matrices.
The R-T level architecture is shown in Figure 3.
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Figure 3. The original, global clock CASTLE architecture

The sub-unit TIMING and CONTROL controls not only one processor, but all the
processors on the chip. This is the origin of most synchronization difficulties.

In Figure 4. it can be seen that the state variables (IBUS1), additive constants (IBUS2),
and the bit-vectors of template selection (IBUS3) are continuously shifting in FIFO
memories. The buses LBI, LBO, RBI and RBO are used for the communication with
the left-side and right-side neighbouring processors. The FIFOs of state variables are
particularly complicated circuits. These are so-called multi-direction FIFOs with
horizontal and vertical shifting, combined with both horizontal and vertical rotation.
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Figure 4. Traditional FSM controlled multidirection FIFOs of CASTLE
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Figure 5. The FSM controlled arithmetic unit of the CASTLE processor

The left-side 9 cells with indexes 0, 1, 2 of the three state-FIFOs take part in the next-
state calculation, along with the left-side cell of the constant-FIFO and the template
values selected by the left-side cell of template-select FIFO. Figure 5. shows the three-
multiplier arithmetic unit, for the inputs of which the state-FIFO rotate the state- and -
template-operands. There is a feedback via an ACCUMULATOR and a TEMPORARY
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ACCUMULATOR. The latter receives the constant to be added to the sum-of- products.
The control signals of the register-tranfers are marked in the figure, and a timing
diagram shows the three-cycle rotation (rotvert, lacc, lact_acc), preceded by the loading
of an additive constant (lact op7).

4. Architecture elements of a Dual-Rail asynchronous CNN processor

A DR asynchronous R-T level system can be considered as a composition of DR-
stages. A DR-stage consists of DR-registers, which communicate with the registers of
other stages in the way detailed above, and DR function units, the operation of which
fulfils the criteria of logic completeness.

Figure 6. demonstrates how the R-T level DR units are connected to each other, using
DR buses and acknowledge signals.
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Figure 6. The architecture of DR-CASTLE processor

The two most interesting DR-stages are presented in this paper. They are interesting
from the point of view that several new solutions had to be invented, which had not
existed until then in the literature. These are as follows:

®  DR-FIFO compositions for multidirection shifting and rotations
e  CNN arithmetic unit consisting of DR multipliers and adders and DR registers

4.1. Dual-Rail, multidirection FIFOs for asynchronous CNN processor

Sparso established the scheme of how to build up a shift-register from DR-latches. [9].
He called the state of a latch BUBBLE, when its output is invalid, and output ack_out
and input ack_in are low. In the BUBBLE state the latch can be immediately loaded
from its valid input. The opposite state is called TOKEN. There are two variants of the
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TOKEN state. The fisrt is called DATA-TOKEN, in which the Y output is valid,
ack_out is high, and ack_in low. The second one is called EMPTY-TOKEN, when the ¥
output is invalid, ack_in are high, and ack_out is low. The different state registers and a
part of a DR-shift-register is shown in Figure 7.
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Figure 7. The states of DR-registers and the initial state of a register-chain
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Figure 8. A simplified model of multidirection DR-FIFO

A chain of DR-LATCHES can be considered an n-stage shift-register, if

there are 2n latches chained,
the initial state of the chain has to be special, namely an EMPTY-TOKEN
latch has to be followed by a DATA-TOKEN one.
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Starting the DR-SR from this state with a valid input and rising the last ack in,
BUBBLE state runs along the chain from the last latch to the first one. So all the data
will be shifted and the state of each latch will change.

4.1.1. DR-register with clear

The DR-register equipped with CLEAR input is a necessary component of DR-FIFO.
The CLEAR is a single-rail control signal, H-level of which results in valid intial data
on the output. This initial data in our case is the valid code of the integer 0. If signal
CLEAR is raised, the initial data is stored, and the register will be in state DATA-
TOKEN. It can be seen in Figure 8 that each second register is an instance of this
component. The symbol of DR-register with CLEAR is shown in Figure 9., and in
Figure 10. the scheme of its element is presented. The VHDL behavioural description of
this unit is given in the Appendix.

clear—>- DR_REG

ack_o -<— e
ack_i

Figure 9. Symbol of DR-register with clear.
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Figure 10. Scheme of DR-LATCH with clear

CLEAR

4.1.2. Multi-input DR-register with DR selectors (Figure 11.)

Multiple-input DR-registers with selectors are also needed for the multidirection FIFOs.
A selector-wire, which is a ‘single-rail’ belongs to each data-input. The condition of
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storing the value of a given data-input is that the selector value belonging to the data-
input is ‘H’. It means that the ‘H’ is the valid-value on a single-rail. The behavioural
description can be seen in the Appendix.
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d0 — DR_REG
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Figure [1. Scheme of two-inpui DR-REG with single-rail selector wires

4.1.3. Multi-input DR-register with priority order for inputs (Figure 12.)

In the case of the third type of a multiple-input register a priority order is defined for the
inputs. For the two-input DR-register given in Figure 12. input d1 dominates the input
d2. The VHDL behavioural description of this unit is given in the Appendix.
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Figure 12. Scheme of two-input DR-REG with priority order for the inputs

4.2. Dual-Rail arithemetic unit with feedback

The arithmetic unit is a classical DR stage, consisiting of an arithmetic core and
registers. The core is a compostion of DR multipliers and adders, and these components
are dual-rail combinational networks. The input DR-registers make the asynchronous
communication with the outputs of the multidirection FIFOs. The chain of three DR
registers constitutes the feedback for accumulating the sum of subproducts. Sparso
showed that for a DR-ring without a dead-lock the presence of at least three latches is
needed. The third register of the loop receives not only the accumulated sum of the
subproducts, but in the initial step of each cycle the additive constant as well. This
register has two data-input with a common acknowledge signal. One of the data-input is
connected to FIFO cell which stores the additive constant. Since a valid code of this
input starts a new calculation cycle, it has a priority over the other data-input, which is
the closing point of the loop.
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Figure 11. The scheme of the Dual-Rail arithmetic unit

5. Conclusions

The original synchronous architecture of CASTLE can easily be transformed into a
Dual-Rail asynchonous version. Above the well known elements, the elaboration of
several new Dual-Rail logic elements is necessary. They are as follows:

e  Dual-rail register with CLEAR single-rail control input, which enables
setting the register into so called DATA-TOKEN state.

s Two- or more-input dual-rail register with sigle-rail selection inputs

e Two input dual-rail register with priority order for inputs

Using these new RT elements, fully asynchronous CNN processor arrays can be
realized, and the results can be applied in hardware-implementation of other types of
neural networks too. Designing Dual-Rail asynchronous processors for digital VLSI
implementations of neural networks helps avoid the clocking problem of submicron
VLSI technology.
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Appendix
package DR _PACK 1is

type WIRE is (L, H);
subtype DR_REAL is real range -10.000000 to +9.999999;

end DR-PACK;

-- behavioural description of DR-REGISTER with CLEAR

library work;
use work.DR_PACK.all;
entity DR_REG_cl is
port ( clear : in bit;
d : in DR_REAL;
y : inout DR_REAL;
ack_1i : in bit;
ack_o : out bit);
end;

architecture BEH of DR_REG cl is
constant td : time := 1 ns;

constant REALNULL : DR_REAL := -10.000;
begin

process (clear, d, ack_i, y)
begin
if clear = '1' then
y <= 0.0 after td;
ack_o <= '1' after td;

elsif clear = '0' and Y = REALNULL and ack i = '0' and
d /= REALNULL then
y <= D after td;
ack_o <= '1' after td;

elsif clear = '0' and Y /= REALNULL and ack i = '1' and
d = REALNULL then
y <= REALNULL after td;
ack o <= '0' after td;
end if;
end process;
end BEH;
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-- behavioural description of TWO-INPUT DR-REGISTER with
SELECTOR wires

library work;

use work.DR_PACK.all;

entity DR_REG D1 D2 is

port ( dl1, d2 : in DR_REAL;
Yy : inout DR_REAL;
ack_i : in bit;
ack_o : out bit;
cl, c2 : in WIRE);

end;

architecture BEH of DR_REG_D1 D2 is

constant td : time := 1 ns;
constant REALNULL : DR_REAL := -10.000;
begin
process (dl, d2, c¢l1, c2, ack i, y)
begin
if y = REALNULL and ack_i = '0' and dl /= REALNULL and

¢l = H then
y <= dl after td;
ack o <= '1' after td;

elsif y = REALNULL and ack i = '0' and d2 /= REALNULL
and
c2 = H then
y <= d2 after td;
ack_o <= '1l' after td;
elsif y /= REALNULL and ack i = '1' and dl1 = REALNULL
and
d2 = REALNULL and
cl = L and ¢2 = L then
vy <= REALNULL after td;
ack_o <= '0' after td;
end if;
end process;
end BEH;

-- behavioural description of TWO-INPUT DR-REGISTER with
priority order -- for the inputs

library work;
use work.DR_PACK.all;
entity DR _REG DD is
port ( dil : in DR_REAL;
d2 : in DR_REAL;
y : inout DR _REAL;
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ack i : in bit;
ack o : out bit);

end;

architecture BEH of DR _REG DD is

constant td : time := 2 ns;
constant REALNULL : DR _REAL := -10.000;
begin
process (dl, d2, ack i, y)
begin
if y = REALNULL and ack_i = '0' and dl /= REALNULL then

y <= dl after td;
ack_o <= '1' after td;

elsif y /= REALNULL and ack i = '0' and dl /=
REALNULL then
y <= dl after td;
ack o <= '1' after td;

elsif y = REALNULL and ack i = '0' and d2 /= REALNULL
then
y <= d2 after td;
ack o <= '1' after td;
elsif y /= REALNULL and ack i = '1' and d1 = REALNULL
and
d2 = REALNULL then
v <= REALNULL after td;
ack_o <= '0' after td;
end if;
end process;
end BEH;
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