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Abstract: This paper proposes a framework for selecting affinely parametrized quasi 

Linear Parameter Varying (qLPV) model structures that facilitates 

solutions to specific control design tasks encountered in vehicle dynamics 

applications. Moreover it facilitates the selection of the scheduling 

variables and provides a framework to decide whether the controller 

performance can be improved by introducing some estimated parameters as 

scheduling variables, i.e., if some adaptive strategy is needed or not. The 

proposed scheme is an iterative process: in every step a suitable model 

transformation is applied to generate a finite element convex polytopic 

representation in order to obtain a qLPV model. Then the LMI  feasibility 

of a robust control objective is verified, which is closely related to the 

original control task. This step provides a selection criterion that sorts out 

the suitable models from a finite set of model candidates generated by the 

iterative method.  
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1. Introduction and motivation 

In a control design problem a control law must be designed for a not entirely known 

system in order to reach given performance specifications. For a successful analysis and 

design, it is crucial to obtain a model that captures the essential behaviors of the system 

under consideration. 

In modern control design the approximation of nonlinear models with linear models 

is often based on a qLPV description. This approach is based on the possibility of 

rewriting the plant in a form in which nonlinear terms can be hidden by using suitably 

defined scheduling variables by maintaining the linear structure of the model. An 

advantage of qLPV models is that in the entire operational interval nonlinear systems 

can be defined and a well-developed linear system theory to analyze and design 

nonlinear control system can be used. 
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Figure 1. General feedback configuration 

The models are augmented with performance specifications and uncertainties. 

Weighting functions are applied to the performance signals to meet performance 

specifications and guarantee a tradeoff between performances. The uncertainties are 

modelled by both unmodelled dynamics and parametric uncertainties. As a result of this 

construction a Linear Fractional Transformation (LFT) interconnection structure, which 

is the basis of control design, is achieved, see Figure 1. 

These representations provide a particular structure to the LPV system, also known 

as a     configuration, whereby the parameter-varying, uncertain or nonlinear terms 

are located in the diagonal   operator and the time invariant part is described by the 

operator  . An LFT based model set is widely considered to be the most general 

representation adopted in robust controller design. 

It is apparent that there is a great amount of analogy between classical adaptive 

schemes and the qLPV design philosophy, see [1], [2]. The parameters that are 

estimated during operational time and which are used to tune the actual controller in an 

adaptive scheme play the same role as the scheduling variables in the qLPV context. 

From this latter perspective the difference consists in the acquisition of the scheduling 

variable, namely, in the adaptive case the values of the scheduling variable are not 

directly available by the measurement and need to be obtained by a specific estimation 

process based on the directly available data. This observation leads us to propose a 

unified view of both control design strategies cast in the qLPV design framework by 

extending the set of scheduling variables with parameters that might not be directly 

measured but estimated using a suitable designed procedure. The idea was tested 

through certain applications, see [3]. 

The solution to the LPV control synthesis problem is formulated as a parameter 

dependent LMI optimization problem, i.e. a convex problem for which efficient 

optimization techniques are available. This control structure is applicable whenever the 

value of parameter is available in real-time. The resulting controller is time-varying and 

smoothly scheduled by the values of the scheduling variables. Therefore qLPV models 

with Linear Matrix Inequalities (LMI), as the main design tool, seem to be the most 

efficient approach to achieve robust and non-conservative results. 

Besides the weighting functions  (performance and uncertainty weights) the model 

structure itself -- which is not unique -- influences decisively the success of the design 

and control quality. Concerning the latter the role of the uncertainty structure 
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(modeling) is well known. It is less understood that in the LFT framework the choice of 

the scheduling variables affects the model in the same way as the uncertainties, 

moreover for a given model their choice is also non-unique, in general. The aim of this 

paper is to provide a systematic framework in which the search for a suitable model-

concerning both uncertainty and scheduling variable structure- for a given control task 

can be performed. 

1.1. The proposed modeling framework 

The starting point is a (nominal) model  

 (
 ̇
 
 
)        (

 
 
 
) (1) 

where   is the performance vector,   contains the measured variables, i.e., 

components/functions of   and some measured/estimated parameters,   is the control 

input, while   is the disturbance vector. The set of uncertain parameters is denoted by  .  

The goal is to give a description of the type  

           ∑                    (2) 

of the system which facilitates the control design task as much as possible where    will 

be the scheduling variables of the design while    will catch the effect of the parametric 

uncertainties. 

Robust control is handled based on the feedback connection depicted on Figure 0 

and the associated well-posedness theorem, for details see [5]:  

Theorem 1 Let a subset        and a matrix        be given. The following 

statements are equivalent:   

 1.  the feedback system on Figure 0 is well-posed, i.e.,             for all     

 2.  there exist a symmetric matrix                such that  

 (
  

)  (
 
  )     (3) 

 (
  

)  (
  

 )             (4) 

The constraint set in (4) is convex, however, it is usually not easily dealt with, since 

represents an infinity number of conditions. One way to overcome this difficulty is to 

approximate the exact set by a tractable one. By choosing appropriate inner/outer 

approximations one may develop computable lower/upper bounds for certain 

performances, e.g., stability margins. 

As a possible solution, a uniformly and automatically executable Tensor Product 

(TP) model transformation method based on the recently developed Higher Order 

Singular Value Decomposition (HOSVD) concept has been proposed, see [7], [6]. The 
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TP model transformation offers uniform, tractable and readily executable numerical 

ways and creative manipulations to generate convex (polytopic) representations of LPV 

models upon which LMI-based design techniques are immediately executable. The 

result of the TP model transformation is a TP model that belongs to the class of 

polytopic models, where the parameter-dependent weightings of the vertex systems are 

one-dimensional functions of the elements of the parameter vector. 

This form offers a relatively simple way to describe various convex hull generations 

in terms of matrix operations. The obtained structures are not unique, however the 

framework provides an efficient background to introduce a set of rules, heuristics and 

algorithms that provide us with a set of candidate model structures on which further 

analysis and final model selection can be carried out. 

The selection criteria in the proposed framework can be tailored according to the 

given control task. The idea is to set an LMI feasibility problem related to a control-

relevant task, e.g., robust stability with state feedback, robust performance with state 

feedback, etc., while solvability and the level of the achieved performances (if 

applicable) will provide the desired selection method. 

The proposed framework facilitates the execution of the following program:   

• build an qLPV model of the type (2),  

• put the given model in the LFT form, e.g.,  

                                (5) 

 where   [
         
         

] and      are constant matrices,  

• solve an LMI feasibility problem related to the control task,  

• evaluate the results. 

In order to make the method reliable the framework must provide efficient 

numerical techniques to perform each step. The aim of the paper is to propose such a 

framework. 

The layout of the paper is the following: in Section 2 a brief description of the TP 

method is given. Section 3 gives details how the LMI problems suitable for the desired 

selection can be set. In Section 4 an example is provided to illustrate the proposed 

method. Finally, Section 5 contains some concluding remarks and future directions. 

2. Tensor Product (TP) transformation for qLPV modeling 

Tensor Product (TP) modeling, in broad sense, is an approximation technique where 

the approximating functions are in a tensor product form. The motivation is 

straightforward: one dimensional functions are much easier to calculate with, handle 

and visualize. A family of methods use tensor products of continuous univariate basis 

functions, e.g., non-uniform rational B-splines. 
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Consider a parameter-varying state-space model with input     , output      and 

state vector      

 [
 ̇   
    

]         [
    
    

] (6) 

with the parameter-varying system matrix  

         (
              
              

)  (7) 

 The time varying  -dimensional parameter vector        is an element of the 

closed hypercube                               . 

For practical reasons a finite element TP modeling is applied which uses a tensor 

defined by the values of         on a suitable discretization of   (usually a grid), i.e., a 

piecewise linear approximation of the multivariate map        . Based on this data TP 

model transformation generates the HOSVD-based canonical form of LPV models [8], 

i.e.,  

 (
 ̇   
    

)        
           (

    
    

)  (8) 

   denotes the  -mode tensor product as defined in [7]. For further details we refer to 

[6], [9]. 

This procedure extracts the unique structure of a given LPV model in the same sense as 

the HOSVD does for tensors and matrices, in a way such that:   

 the number of LTI components are minimized;  

 the weighting functions are univariate functions of the parameter vector in an 

orthonormed system for each parameter;  

 the LTI systems are also in orthogonal position;  

 the LTI systems and the weighting functions are ordered according to the 

higher-order singular values of the parameter vector.  

Based on the higher-order singular values (that express the rank properties of the 

given model for each element of the parameter vector in    norm), the TP model 

transformation offers a trade-off between the complexity of further design and the 

accuracy of the resulting TP model. 

One of the advantages of the TP model transformation is that it can be executed 

uniformly (irrespective of whether the model is given in the form of analytical equations 

resulting from physical considerations, or as an outcome of soft computing based 

identification techniques such as neural networks or fuzzy logic based methods, or as a 

result of a black-box identification), without analytical interaction, within a reasonable 

amount of time. The obtained structure can be directly used for an LFT type modeling 

without any further preprocessing step. 
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Consider the map defined by the ordering            in the multi base number 

system defined by             . According to this indexing the weighting functions are 

denoted by  

          ∏        
               

where                   is the  -th one variable weighting function defined on the  -

th dimension of  , while the corresponding vertex systems are               
. Using 

this index transformation one can write the TP model in the typical polytopic form:  

         ∑   
               (9) 

Remark: Having               and the functions      
 are univariate the further 

splitting of the sum, i.e.,                     is straightforward. 

2.1. Multi-affine models 

In many cases the convexity of the resulting TP model is required. The convex hull 

of      might not be polytopic, however for design purposes a finite, polytopic (outer) 

approximation is needed. Convexity is ensured by the following conditions:  

                                     (10) 

                    ∑  
  
                  (11) 

 These conditions ensure that         is within the convex hull of the LTI vertex 

systems    for any       . 

One of the main advantages of the TP model transformation is that we can find the 

convex representation via numerical matrix operations instead of analytical interactions. 

This approximation is highly nonunique and the TP approach provides a systematic 

approach in which different convex descriptions can be built. The TP model 

transformation was extended to generate different types of convex polytopic models, 

[10]. The generated convex hull of the polytopic models considerably influences the 

feasibility of the LMI-based design and the resulting performance level. 

There are many ways to define the vertex systems and the type of the convex hull 

determined by the vertex system can be defined by the weighting functions. The 

applications of TP models specifies special requirements for the weighting functions. 

For illustration purposes consider                   where         . In Figure 

1 one can see the systems        (in blue). The dotted red lines depicts the directions 

given by the HOSVD while in green is depicted the smallest box that contains the 

convex hull  ̃ of  . Another convex hull is depicted in magenta, that corresponds to a 

TP model. The corresponding weights are depicted in Figure 2.  

It is worth noting that both the TP model transformation and the LMI-based control 

design methods are numerically executable one after the other, and this makes the 

resolution of a wide class of problems possible in a straightforward and tractable, 

numerical way. 
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Figure 2. Different convex approximations  

3. Setting LMI feasibility problems 

Modern control design strategies strongly use LMI techniques. The variety of the 

control tasks affect the complexity of the resulting algorithms. For the purposes of this 

paper robust control objectives that lead to efficiently solvable LMI feasibility problems 

are to be selected. 

Since output feedback control objectives often lead to non--convex bilinear matrix 

inequalities (BMI), which have computationally hard solution algorithms, this class of 

problems are not suitable candidates for a selection criteria. State feedback problems, 

however, usually lead to LMI feasibility problems, which can be solved more 

efficiently. 

The easiest control objective is to stabilize the system. Let us recall that an LPV 

system is quadratically stable if                is fulfilled with a        

matrix for all the parameters      A necessary and sufficient condition for a system to 

be quadratically stable is that this condition holds for all the corner points of the 

parameter space, i.e., one can obtain a finite system of LMIs that must be fulfilled for 

     with a suitable positive definite matrix  , see [11], [12]. 

It follows that for the closed--loop system, i.e, for the matrices                
           the matrix inequality   

               must hold for suitable      

and         By introducing the auxiliary variable             one can reduce 

the problem to a set of LMIs that must be solved at the corner points of the parameter 



Vol. 6. No. 5. 2013  Acta Technica Jaurinensis 

56 

space. This method makes possible to handle in a fairly straightforward way the 

parameter dependent feedback situation. However the method may lead to big LMI 

feasibility problems. This drawback can be eliminated by using relaxation techniques, 

e.g., for details see [13]. 

The drawback of using merely stabilizability as a selection criterion is that there is 

no direct information provided about the performance of the controller since there is no 

explicit performance criteria formulated in the problem. By doing simulations on 

relevant test scenarios, however, the different controllers, hence the different models, 

can be evaluated. 

Fortunately, problems that contain meaningful performance specifications can be 

formulated in terms of LMI feasibility conditions. These problems can be set for 

systems of generalized LFT type:  
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     )                 (12) 

 with the time-varying parameters satisfying       . It is assumed that      admits 

the explicit description               with a continuous matrix function      of 

full column rank. Furthermore, we suppose that (12) is well-posed, and that there exists 

a nominal value      for which   (

 
   )       . 
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Figure 3. Weights for the different TP models  

A -state-feedback or output feedback- controller is searched to fulfill a quadratic 

performance index:  

 ∫  
 

 
[
 
 ]

 

[
    

  
   

] [
 
 ]            

e.g., for an   --gain specification one has              and     . For these 

problems the performance index   is an indicator on the quality of the controller. 

An output-feedback LPV controller for (12) is described as  

 (

 ̇    

    
     

)  (

        

           

           
)(
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 (
     

     )                  (13) 

and consists of an LTI system in which the on-line measured parameter      enters via 

an implicit constraint imposed by      . Here       is a subspace that depends 

continuously on     and that satisfies   (

 
   )        . 

An LPV controller can be obtained by using the following result, for details see e.g. 

[14], [15], [16]:  

Theorem 2 (LPV synthesis)  There exist a controller (13) such that closed-loop system 

is well-posed and stable if and only if there exist    , multipliers   (
  

   ) and 

 ̃  (
 ̃  ̃

 ̃  ̃ ) with     on      and  ̃    on       for all     that satisfy the 

matrix inequalities    
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 where    (

  

  

  
)     (    

   
 ) and  (

  

  

  
)            .  

This basic setting for the controller synthesis can be varied depending on the 

problem at hand and on the actual demands. The information on the change rate of the 

measured scheduling variables can be introduced through the slightly extended design 
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equations derived in [17] and [18]. The details of the controller construction are fairly 

standard, hence, are omitted. Some details on the construction of controller scheduling 

variables, however, are relevant for our topic: 

Relaxation: the LMI conditions on the scaling matrices   and  ̃ must hold on an 

infinite set. In order to make the problem tractable a so called  relaxation technique, i.e., 

sufficient conditions that must hold on a finite set, are needed. However, this might lead 

to a conservative design, hence we want to reduce the relaxation "gap" . 

Having convex weighting functions a sufficient condition for the double summation: 

∑               is  

        
                               

 

              

A recursive version can be formulated for multi-convex TP summations: 

∑              :  

            
                                       

 

 ∑                                              

Using the later technique stability can be proved even the stability domain is not 

convex, see [19] 

Scheduling variables: the scheduling variables of the controller can be obtained 

applying the following procedure; perturb  ̃  if required, to render it non-singular. 

Choose   such that its columns form an orthogonal basis of the image of    ̃  . 

Define  

                ̃                                      (17) 

where   is non-singular with   

                                      

 Set            and           . If       denotes the orthogonal projector 

onto the eigenspace of      with respect to its positive eigenvalues, the continuous 

controller scheduling subspace of dimension    is given by                . 

Since expression (17) is quite complicated in general, by using a TP transform 

technique, one can obtain an affine parametrisation of the controllers scheduling block 

in terms of the original scheduling variables. Thus a more suitable expression that can 

be easily implemented is obtained. 

4. Simulation example 

In Figure 4. a two-degree-of-freedom quarter-car model is shown with body mass 

  , unsprung mass   , suspension stiffness   , suspension damping    and tire 
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stiffness   . The displacements of the sprung mass, the unsprung mass and their 

derivatives are   ,   ,  ̇  and  ̇ , respectively. The system is excited by the road 

disturbance   and controlled by a force  . 

Control performances of the suspension system are to keep sprung mass acceleration 

and suspension deflection small, and simultaneously limit the control force. 

 

Figure 4. Quarter-car model  

The vertical dynamics of the suspension system is formalized in the following way:  

    ̈             (18) 

    ̈                       (19) 

where       
  ̇    

   
 ̇     ̇    

  √  ̇      ̇  is the suspension damping force 

and       
     

     is the suspension spring force, with        . The parts of 

the nonlinear suspension stiffness (  ) are a linear coefficient   
  and a nonlinear 

coefficient   
   while the nonlinear suspension damping    consists of a linear 

coefficient   
  and two nonlinear coefficients   

   and   
   

, [20]. The measured outputs 

are   and  ̇. 

The performance outputs are the passenger comfort (heave acceleration) (    ̈ ), 

the suspension deflection (        ) and the control input (  ). The purpose of 

weighting functions    
,    

, and    
 in the closed-loop interconnection structure is 

to keep the heave acceleration, suspension deflection, wheel travel, and control input 

small over the desired frequency range. These weighting functions can be considered as 

penalty functions, i.e., weights should be large in a frequency range where small signals 

are desired and small where larger performance outputs can be tolerated. 

The weighting functions for heave acceleration and suspension deflection are 

selected as    
            and    

           , where parameter-dependent 

gains are applied to obtain trade-off between passenger comfort and road holding. A 

large gain    and a small gain    correspond to a design that emphasize passenger 

comfort. On the other hand, choosing    small and    large corresponds to a design 

that focuses on suspension deflection. 
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The LPV controller schedules on suspension deflection, and focuses on minimizing 

either the heave acceleration or suspension deflection response, depending on the 

magnitude of the vertical suspension deflection. In order to achieve the shift in focus 

from vertical acceleration to suspension deflection the weights associated with these 

signals are chosen to be parameter-dependent. In the mechanism two parameters are 

defined:    and   . When the suspension deflection   is below   , the gain    is 

selected to be constant and the gain    is zero. When the deflection is between    and 

   the gains change linearly. When the value of the suspension deflection is greater than 

  , the gain    is constant and the gain    is zero, see Figure 5 for   . 

 

Figure 5. Performance gain  

The parameters of the quarter-car model used in the simulations are given in Table 

1. The control oriented qLPV model considers the nonlinearity of the generalized plant 

by selecting as scheduling parameters the measured outputs   and  ̇. Due to the 

structure of the dynamical equations the nonlinearities of the plant are cancelled out by 

a static term, i.e.,  

      
       

   
  ̇    

  √  ̇      ̇   ̅   

 Thus the generalized plant will contain only the nonlinearities introduced by the 

performance weights, with the control signal  ̅ . 
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Table 1. Parameters of the quarter-car model 

  Symbols   Values   Unit   Description  

          body mass  

         unsprung mass  

                 lin. susp. damping 

                 nonlin. susp. damping 

                     nonlin. susp. damping 

                 lin. susp. stiffness 

                  nonlin. susp. damping 

              tire stiffness  

 

 

 

Figure 6. Gains of the performance weights:    and    
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Figure 7. Convex relaxations for         

The weighting functions for heave acceleration, suspension deflection and control 

input are selected as   

    •    
                        ,  

    •    
               ,  

    •    
     ,  
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with          
          

       
 and          

       

       
. The function       has the shape as 

in Figure 5, thus the qualitative shapes of the performance weights    and    are 

depicted o Figure 6. Note that the design guarantees stability for a convex region, i.e., 

one can tune the position of    and    according to the engineering needs. In the 

simulations these values were fixed to      mm and       mm. Moreover, the 

tuning can be done in operational time. For an example for an application where such a 

tuning was exploited in order to achieve a desired behavior see [4]. 

For reference purposes two    controllers were designed where controller      

concentrates only on the heave acceleration while controller      concentrates only on 

the minimization of the suspension deflection. 

The convex relaxations used for            is depicted on Figure 7. Under the 

same conditions (weighting function, performance index) these tests have revealed that 

the value of the performance index that corresponds to the solution of the synthesis 

LMIs (15), (16) vary considerably depending on the choice made for the type of 

convex-hull. This result is in accordance with previous experiences obtained for 

stabilizing state feedback designs and indicates the influence of the convexification on 

the achievable performance in more complex settings, too. 

Several qLPV controllers were design by using the tuning possibility of the LTI part 

of the controller. Two of them,       and       are included in the comparison in 

order to demonstrate the effects that can be achieved by such a tuning. 

 

Figure 8. Achieved heave accelerations 
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Figure 9. Achieved suspension deflections 

 

 

Figure 10. Control inputs of the designed controllers 
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The plots on Figure 8, 9 and 10 contain the achieved heave accelerations, the 

achieved suspension deflections and the applied control forces, respectively. The results 

reflects the achieved trade-off by the qLPV controllers between the conflicting multi-

objective control criteria, i.e., road holding (suspension deflection) and passenger 

comfort (acceleration). 

5. Conclusions 

This paper has proposed methods to facilitate the design process of multi-objective 

qLPV robust control problems, often encountered in the design of vehicle systems, by 

efficient tuning possibilities. The proposed scheme is an iterative process in which a 

Tensor Product model transformation is applied to generate a finite element convex 

polytopic representation in order to obtain a quasi Linear Parameter Varying model. 

Then the LMI  feasibility of a robust control objective is verified that is closely related 

by the original control task. This step provides a selection criterion that sorts out the 

suitable models from a finite set of model candidates generated by the TP method. 

Since the choice of the most suitable convex relaxation has a great impact on the 

achievable performance, further research is done in order to provide algorithmic 

methods that facilitate the generation of different models by the TP  technique. It is also 

a nontrivial question that for a given TP based model (9) how to derive the most suitable 

LFT description that fits the given control task. 
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