Rotational Motion Modelling for Numerical Analysis of Electric Machines

D. Marcsa



DOI: http://dx.doi.org/10.14513/actatechjaur.v10.n2.437

Abstract


The paper presents a brief review of the movement modelling methods of electric machines and the two most common used torque calculation techniques. After the classification of single-layer moving band methods, a low computation cost and an easily realisable new variant of this movement modelling technique is proposed. To study the accuracy of proposed moving band technique equipped with Arkkio's method and Maxwell's stress tensor method for torque calculation an international benchmark problem used. Further, to check the applicability, the proposed method has been used to analyse a three-phase switched reluctance motor. The results of proposed method have been compared to analytical and numerical results.

Keywords


Rotational motion modelling; Finite element method; Torque calculation; Electric machine

Full Text:

PDF

References


Sarigiannidis, A. G., Beniakar M. E., Kladas A. G.: Hybrid Analytical-FEM Methodology for Loss Evaluation in Traction Motors for Electric Vehicle Applications,

in 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, pp. 1–-4, 2016

DOI: 10.1109/CEFC.2016.7816130

Kim C. K.: A Novel Calculation Method on the Current Information of Vector Inverter for Interior Permanent Magnet Synchronous Motor for Electric Vehicle, IEEE Transactions on Magnetics, Vol. 50, No. 2, pp. 829–-832, 2014

DOI: 10.1109/TMAG.2013.2279555

Xiping, L., Ya, L., Zhangqi, L., Tao, L., Zhenhua, L.:Analysis and design of a high power density permanent magnet-assisted synchronous reluctance machine with low-cost ferrite magnets for EVs/HEVs, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 35, No. 6, pp. 1949–-1964, 2016

DOI: 10.1108/COMPEL-05-2016-0233

Haiwei, C., Bo, G., Longya, X., Woongchul, C.: Optimal design of synchronous reluctance machine: A feasible solution to eliminating rare earth permanent magnets for vehicle traction applications, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 33, No. 5, pp. 1569–-1586, 2014

DOI: 10.1108/COMPEL-09-2013-0287

Roger, D.: Electrical Machines dots a Challenge for the Year 00 ?, International Compumag Society Newsletter, Vol. 12, No. 1, pp. 5–-7, 1999

Kawase, Y.: Magnetic Field Analysis Coupled with Electric Circuit and Motion Equation, International Compumag Society Newsletter, Vol. 7, No. 3, pp. 12–-16, 2000

Preston, T. W.: Implementation of the Finite Element Method into an Industrial Design Environment, International Compumag Society Newsletter, Vol. 8, No. 3, pp. 2–-8, 2001

Kuczmann, M., Iványi, A.: The Finite Element Method in Magnetics, Akadémiai Kiadó, Budapest, 2008

Luomi, J.: Finite Element Methods for Electrical Machines, Chalmers University of Technology, Gothenburg, 1993

Bastos, J. P. A., Sadowski, N.: Electromagnetic Modeling by Finite Element Methods, Marcel Dekker, New York, 2003

Marcsa, D.: Finite Element Analysis of a Solid-Rotor Induction Machine, Acta Technica Jaurinensis, Vol. 3, No. 2, pp. 61–-70, 2010

De Gersem, H., Weiland, T.: Reformulation and Generalisation of the Air-Gap Element, International Compumag Society Newsletter, Vol. 12, No. 1, pp. 2–-9, 2005

Razek, A. A., Coulomb, J. L., Féliachi, M., Sabonnadiére J. C.: A Concept of an Air-Gap Element for the Dynamic Analysis of the Electromagnetic Field in Electric Machines, IEEE Transactions on Magnetics, Vol. 18, No. 2, pp. 655–-659, 1982

DOI: 10.1109/TMAG.1982.1061898

Davat, B., Ren, Z., Lajoie-Mazenc, M.: The Movement in Field Modeling, IEEE Transactions on Magnetics, Vol. 21, No. 6, pp. 2296–-2298, 1985

DOI: 10.1109/TMAG.1985.1064185

Dular, P., Geuzaine, C., Ferreira da Luz, M. V., Sadowski, N., Bastos, J. P. A.: Connection Boundary Conditions with Different Types of Finite Elements Applied to Periodic Conditions and to the Moving Band, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 20, No. 1, pp. 109–-119, 2001

DOI: 10.1108/03321640110359796

Sadowski, N., Lefévre, Y., Lajoie-Mazenc, M., Cros, J.: Finite Element Torque Calculation in Electrical Machines While Considering the Movement, IEEE Transactions on Magnetics, Vol. 28, No. 2, pp. 1410–-1413, 1992

DOI: 10.1109/20.123957

Demenko, A.: Movement Simulation in Finite Element Analysis of Electric Machine Dynamics, IEEE Transactions on Magnetics, Vol. 32, No. 3, pp. 1553–-1556, 1996

DOI: 10.1109/20.497547

De Gersem, H., Ion, M., Wilke, M., Weiland, T., Demenko, A.: Trigonometric Interpolation at Sliding Surface and in Moving Bands of Electrical Machine Models, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 25, No. 1, pp. 31–-42, 2006

DOI: 10.1108/03321640610634308

Salon, S. J., Schneider, J. M.: A Hybrid Finite Element -- Boundary Integral Formulation of the Eddy Current Problem, IEEE Transactions on Magnetics, Vol. 18, No. 2, pp. 461–-466, 1982

DOI: 10.1109/TMAG.1982.1061891

Alotto, P., Bertoni, A., Perugia, I., Schötzau, D.: Discontinuous Finite Element Methods for the Simulation of Rotating Electrical Machines, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 20, No. 2, pp. 448–-462, 2001

DOI: 10.1108/03321640110383320

Preston, T. W., Reece, A. B. J., Sangha, P. S.: Induction Motor Analysis by Time-Stepping Technique, IEEE Transactions on Magnetics, Vol. 24, No. 1, pp. 471–-474, 1988

DOI: 10.1109/20.43959

Perrin-Bit, R., Coulomb, J. L.: A Three Dimensional Finite Element Mesh Connection for Problems Involving Movement, IEEE Transactions on Magnetics, Vol. 31, No. 3, pp. 1920–-1923, 1995

DOI: 10.1109/20.376415

De Gersem, H., Weiland, T.: Harmonic Weighting Functions at the Sliding Interface of a Finite-Element Machine Model Incorporating Angular Displacement, IEEE Transactions on Magnetics, Vol. 40, No. 2, pp. 545–-548, 2004

DOI: 10.1109/TMAG.2004.824616

Rodger, D., Lai H. C., Leonard, P. J.: Coupled Elements for Problems Involving Movement, IEEE Transactions on Magnetics, Vol. 26, No. 2, pp. 548–-550, 1990

DOI: 10.1109/20.106375

Antunes, O. J., Bastos, J. P. A., Sadowski, N.: Comparison Between Torque Calculation Methods in a Non-Conforming Movement Interface, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 27, No. 1, pp. 27–-36, 2008

DOI: 10.1108/03321640810836609

Rodger, D., Lai, H. C., Leonard, P. J.: Coupled Elements for Problems Involving Movement, IEEE Transactions on Magnetics, Vol. 26, No. 2, pp. 548–-550, 1990

DOI: 10.1109/20.106375

Buffa, A., Maday, Y., Rapetti, F.: Calculation of Eddy Currents in Moving Structures by a Sliding Mesh-Finite Element Method, IEEE Transactions on Magnetics, Vol. 36, No. 4, pp. 1356–-1359, 2000

DOI: 10.1109/20.877690

Henrotte, F.: Handbook for the Computation of Electromagnetic Forces in a Continuous Medium, International Compumag Society Newsletter, Vol. 11, No. 2, pp. 2–-8, 2004

Arkkio, A.: Analysis of Induction Motor Based on the Numerical Solution of the Magnetic Field and Circuit Equations, PhD thesis, Helsinki University of Technology, 1987

Davey, K. R.: Induction Motor Analysis—International TEAM Workshop Problem 30 [Online]. Available: http://www.compumag.co.uk

Agros2D - free finite element software [Online]. Available: https://www.agros2d.org/




Acta Technica Jaurinensis

ISSN 1789-6932 (Print)
ISSN 2064-5228 (Online)

© Szechenyi Istvan University, Gyor, Hungary