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Abstract: The quality of navigation methods for mobile means depends first of all on 
description accuracy of their movement in a given area. This paper deals 
with Neural Gas (NG) networks whose role is creating of topologies for 
complex objects as for instance road networks of municipal 
communications where it is necessary to determine relations among 
individual elements (in our case a network of mutually interconnected 
communication nodes), too. The proposed approach combines besides NG 
networks also tree search algorithms, namely A*, hereby enabling to 
consider also various restraints, e.g. traffic rules, too. The performance of 
the proposed algorithm is shown on the road network of the city Košice in 
Slovakia. 
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1. Introduction 
At present there are three basic groups of navigation methods for mobile means: 
heuristic, grid and exact algorithms [1]. A typical representative of the first group there 
are Bug algorithms. They are simple but suitable only for avoiding only a smaller 
number of obstacles, mainly in tasks for preventing immediate collisions. Potential 
fields [15, 18] are the most known approaches of the grid algorithms. However, they 
require not only creating a potential field of the whole area in advance but in the case of 
some changes (e.g. a new obstacle) it will be necessary again newly to create the whole 
field and computational efforts are considerably high. The exact algorithms as visibility 
graphs or Voronoi diagrams enable to find the best (in our case the shortest) trajectory. 
If there is no solution they will be even able to terminate the computation and so to 
prevent timeless sub-cycling. Opposite to the potential fields in the case of changes it 
will be necessary to do modifications only in the given area. However, their drawback is 
that they require very accurate data about obstacles that means a serious problem in 
practical applications. 

The NG networks are basically graphs, which enable modelling the form of given 
patterns, similarly as in Kohonen networks (Self-organizing Maps) but opposite to them 
NG networks do not have any definite topology of connections in the output layer. This 
fact seems to be very advantageous mainly in the case of non-homogenous areas. Their 
ability of accurate description for a given pattern was compared to other kinds of neural 
networks and confirmed e.g. in [6, 12, 21]. Therefore it seems to be very suitable to 
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utilize them just for the description of road networks with various types and forms of 
communications. Besides, the use of some modified search algorithms enables us to 
incorporate into the description various restraints, e.g. traffic rules or traffic density, too. 
In addition, convenient graph structure of NG networks enables very efficient searching. 

This paper deals with description of NG networks principles, followed by description of 
the traffic networks problem and modification of the A* algorithm. In concluding parts 
some experiments will be analysed, which were done on a real road network of the city 
Košice in Slovakia. 

2. Principles of NG Networks 
The NG networks are basically derived from Kohonen networks where for the position 
change determination of output neurons also the neighbourhood principle is used. 
However, opposite to them the neighbourhood is changed in each adaptation step 
according to given input [9]. This enhanced adaptation measure enables a relatively free 
movement of neurons in the area, which should be described just by their suitable 
deployment and it represents analogy to gas spreading in a closed space. Learning of 
NG networks mutually combines two learning paradigms – own NG learning and 
competitive Hebbian learning. 

Let us suppose that we have a predetermined number of points N with help of them we 
can describe a given space. They will be denoted as reference vectors w whose elements 
are in general space coordinates – in our case they will be two-dimensional. Reference 
vectors w divide the area (space) into N parts and in each of them they represent centres 
of these parts. Such an approach is known as vector quantization that represents certain 
form of coding with help of which we can describe given area and which is the own task 
of NG networks. The success of this task is dependent just on suitable deployment of 
reference vectors. Therefore, similarly as in Kohonen networks, in individual cycles we 
will select points ξ belonging to this area and with their help we will adapt positions of 
reference vectors, which define positions of neurons ci of the network output layer A, 
i.e. A={c1, c2, …, cN}. 

The object of the own learning is adaptation of reference vectors, i.e. calculation of their 
change ∆wi(t) in the time t. It is a kind of the multiple-winners learning where the most 
change is at the winner vector ws1 but in accordance with the neighbourhood range 
h(t,k) also other k neighbours are changed although in a lower measure. The vector ws1 
is assigned to such a point, which is the nearest to the input ξ, i.e. arg(min(ξ – wS1)). The 
ambition is to reach bigger changes in a broader range at the beginning of the learning 
process and continuing with time this trend would decrease till the adaptation end time 
tmax. From this reason parameters λp and λz are defined – starting and final where λp�λz. 
The parameter λ for the given time t is defined as: 

 max/( ) ( / )t t
p z ptλ λ λ λ=  (1) 

and the neighbourhood range h(t, k) for the kth neighbour is computed as: 

 1( , ) exp .
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The adaptation process is also influenced by the learning parameter γ whose value is 
time-dependent according to γp and γz similarly as for λ and the calculation is like in (1). 

The entire adaptation process in individual adaptation steps till tmax is following: 

1. Sequencing all reference vectors by their distance to ξ into series: 

 1 2 .S S SNw w wξ ξ ξ− ≤ − ≤ ≤ −…  (3) 

2. Adapting all reference vectors by: 

 ( ) ( ) ( , ) ( ).Si Siw t y t h t k wξ∆ = ⋅ ⋅ −  (4) 

3. Setting up the time t = t+1 and until t < tmax return to the step 1 else finish the 
adaptation. 

It is possible to prove that this kind of adaptation principally corresponds to the 
optimization of a cost function according to the gradient descent method [10], which 
does not exist in Kohonen networks. In other words, the adaptation in NG networks is 
usually quicker. 

The competitive Hebbian learning [9] serves for constructing a topological structure 
among neurons of the output layer. This kind of learning comes from the basic idea of 
Hebbian learning, i.e. that the connections whose neurons are activated at the same time 
(synchronously) are strengthened. Their change corresponds to the product of the 
activation values of these neurons. However, at the same time a competition element is 
embedded, too. This means in one adaptation step only one connection is created, 
namely between the two closest network points to the input ξ, i.e. between the reference 
vectors ws1 and ws2 of the points S1 and S2 (neurons c1 and c2). The distance among 
points is usually calculated by Euclidian norm. In [11] it was shown that the topology 
created in such a manner corresponds to Delaunay triangulation. Consequently, after 
transforming to Voronoi regions, these regions ensure finding an optimal path. 

The simplest way for learning NG networks is using a two-stage process where at first 
suitable deployment of a given number of points is created and then they are mutually 
interconnected using competitive Hebbian learning. However, this approach is possible 
only in the case of predefined tmax, which is a considerably limiting circumstance. The 
other possibility is based on parallel processing of both learning kinds. However, there 
is a danger that Delaunay triangulation will be damaged due to continued changes of 
reference vectors. From this reason it is necessary to incorporate a mechanism of 
removing obsolete connections, too. For this purpose a process of aging connections is 
used where an age v(c1, c2) is assigned to each connection between the neurons c1 and 
c2. At the moment of creating a new connection its age is set up to zero as well as in the 
case if the algorithm tries again to create this connection (the so-called connection 
rejuvenating). The age will be incremented by 1 in all connections among all direct 
neighbours of c1 if it becomes again the winner. If the age of a connection reaches the 
value T(t) it will be removed. In such a way a risk of invalid connections will be 
minimized. As at the adaptation start bigger changes are done it is necessary for T(t) to 
be changed in time from smaller to bigger values. It is determined in a similar way as in 
(1) where Tp � Tz. 
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A learning process by adaptation steps for obtaining a description of a ring (grey 
surface) [4] is depicted in Fig. 1. It is possible to observe the influence of parameters 
(λp= 10, λz = 0.01, γp = 0.5, γz = 0.005, tmax = 40000, Tp = 20, Tz = 200) with advancing 
time, too. From intelligibility reasons in the depictions b – e the connections among 
neurons are missing. 

In the first steps of learning a large neighborhood of the input ξ contains adapted points, 
which is characterised by a massive deployment of a large number of points in a form 
similar to the given space. Later, the influence of adaptation parameters h(t, k) and γ(t) 
will be weakened and thereby the adaptation will be performed only in close 
surroundings of the input ξ, i.e. on a local level individual reference vectors try to cover 
the given space uniformly. Such a phenomenon is typical for various forms of described 
space [3]. 

 
Figure 1. Learning process of a NG network with competitive Hebbian learning on a 

ring indicating the number of steps 

2.1. Growing NG Networks 

A considerable limitation of the previous approach is based on a fact that it is necessary 
to determine a fix number of output neurons in advance whose estimation can be 
difficult (if at all possible). Besides, further required property could be embedding a 
quality criterion directly as an ending condition for learning. These requirements led to 
a design of modified NG networks with incremental learning named as Growing NG 
(GNG) networks [2] using already mentioned algorithms. 

A GNG network starts learning with two starting neurons. For growing their number as 
well as their deployment it uses heuristics and the so-called quantization error Ec of 
individual neurons ci where squared errors of the vector ws relating to the input ξ will be 
accumulated, i.e.: 

 2
c SE wξ= −∑  (5) 
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if this neuron is a winner, i.e. a neuron with the biggest error (further point S1). The 
learning task is to perform the space quantization in such a way to obtain the minimum 
total quantization error E, i.e. ∑Ec for i = 1, …, N. From experimental experience 
(heuristics) it can be mostly supposed that inserting further neurons will reduce the error 
E and the best result will be obtained if the new point r is ‘close’ to S1. For ‘closeness’ 
determination there is another heuristic based on using point S2, which is a direct 
neighbour having the biggest Ec comparing to another ones. A new reference vector wr 
will be then placed between S1 and S2: 

 ( )1 2 / 2.r S Sw w w= +  (6) 

Consequently, the connection between S1 and S2 will be removed and new two ones 
will be created between S1 and r as well as S2 and r. Simultaneously, the errors of 
points S1 and S2 will be reduced by values α.Ec1 and α.Ec2 where α is the quantization 
error reduction parameter. As it is clear the point r will not fully reduce the total 
quantization error analogically to (6) a certain amount of starting error will be assigned 
to r, i.e. Er = (Ec1 + Ec2)/2. 

Unlike NG networks only the reference vectors of S1 and its direct neighbours are 
adapted. We can consider only local adaptation with uniform growing of output neurons 
as it is visible in Fig. 2 and it seems to be also a certain advantage from the point of 
view of possible simpler learning process analysis. As the adaptation of reference 
vectors is an iterative process inserting new points will be done only in adaptation steps 
being a natural product of the parameter τ. Further differences to NG networks are 
timely constant learning parameters for S1 and its direct neighbours Si, i.e. γS1 and γSi as 
well as the maximum age of a connection T. It is supposed in each adaptation step 
certain improvement will occur and therefore the quantization error Eci will be always 
reduced by the value β.Eci. 

The whole learning process of GNG networks is as follows: 

1. During initialization two starting neurons are selected arbitrarily. The connection set 
is empty. 

2. An input signal ξ enters the system and the point S1 with the biggest error Ec1 from 
all ci ∈ A will be obtained. Consequently, the point S2 as a direct neighbour of S1 
will be determined. The points S1 and S2 will be connected and the connection age 
will be set up to zero. If the connection already exists then its age will be set up 
again to zero. 

For c1 the equation (5) will be used and reference vectors for S1 as well as its direct 
neighbours will be adapted by: 

 ( )Si i Siw wγ ξ∆ = ⋅ −  (7) 

for i = 1, 2, … and the age of their connections will be incremented. 

3. If a connection reaches the age T it will be removed as well as all points without any 
connections. 
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4. If the adaptation step reaches a natural product of τ (if no then next step 6) a new 
point r (6) will be inserted and connections and errors for S1, S2 and r will be 
modified. 

5. For each neuron ci the quantization error Eci is reduced by the value β.Eci. 

6. If the ending condition is not yet fulfilled (e.g. maximum network dimension or 
minimum error) then continue next adaptation step and go to the step 2. 

In Fig. 2 there is depicted learning process of a GNG network by individual adaptation 
steps again on the same example of a ring (see Fig. 1) [4] (τ = 300, γS1 = 0.05, γSi = 
0.0006, α = 0.5, β = 0.0005, T = 88, N = 100). Comparing Fig. 1 and Fig. 2 it is 
possible to see differences of learning NG and GNG networks. However, the obtained 
results are almost identical (see Fig. h). 

 
Figure 2. Learning process of a GNG network on a ring indicating the number of steps 

3. Utilization and Modification of NG Networks for Purposes of Path 
Planning 

Still nowadays data for traffic navigation systems are created by a complicated way 
with considerable portion of manual work either in preparing maps or directly on place 
in measuring orientation points using GPS. In our case it is possible to almost fully 
automate this preparation stage (besides inserting data about one-way roads and other 
entry restrictions). Using a colour filter only communications are extracted from the 
map (Fig. 3) and this kind of information will be a direct basis (training set) for 
learning. For our purposes we used a GNG network and experiments were done on the 
map of city Košice. 

In Fig. 3 there is a part of a primarily learned network (blue colour) together with the 
real state of communications (black colour). We can see that this network partially: 

• connects communications without any real connection, which is wrong, 
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• is redundant, i.e. it contains too many points, which can be omitted and thereby 
we can get a simpler network structure. 

 
Figure 3. A part of a primarily learned GNG network 

During removing wrong connections it is necessary to distinguish between really 
incorrect connections as e.g. the connections a, b in Fig. 4 and principally acceptable 
connections c, d. Acceptable connections represent a principal existence of a road only 
they are not able accurately to describe its form. From this reason additional points will 
be inserted better to form it. For separating these two cases a new modification of the 
Bug2 algorithm [8] was proposed [16] where a search oval is created with the radius ρ 
covering the investigated connection (see Fig. 4). If in this oval a continuous connection 
exists between the end points of the investigated connection then the connection is 
acceptable else it will be removed. 

Further step is removing redundant connections. In Fig. 3 it can be seen straightforward 
roads are described not by only one connection but by several shorter connections, too. 
All intermediate connections are dispensable because they can be substituted by a 
longer one, which causes lower memory efforts and shortening the path search. Usually, 
using reduction mechanisms a considerably simpler network is obtained.  

Since, in a traffic network there are both bidirectional and one-way roads the network 
from Fig. 3 will be doubled and connections will be given orientations. Consequently, 
for one-way communications (including rotaries) the prohibited directions will be 
removed. Only this stage requires manual activity. Finally, the connections will be 
given the information about their length, which is in other words the path cost. The last 
two kinds of information, i.e. orientation and path cost are fundamental for path search 
algorithms. 
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Figure 4. Identification of wrong connections 

Creating a description of the road network in the form of a tree structure using NG 
networks represents only the first stage in the navigation task. Next stage is preformed 
by tree search algorithms utilizing the structure of a NG network as a convenient data 
source where they solve the task to find the best path between two points. For this 
reason the A* algorithm was used being able to find the shortest path with a minimum 
number of browsing and in the case of its absence also being able to give a message [8]. 

However, it is necessary still to take some modifications of the A* algorithm [19] to 
keep traffic rules, namely: 

• prohibition of turning in a node, 

• the so-called P-problem. 

Since in the bidirectional communications there is each connection doubled with reverse 
orientations this would enable turning in next node (point), which means turning in a 
road. Therefore, being used the current connection its reverse orientation is temporarily 
cancelled. 

As seen from Fig. 5 the so-called P-problem resembles to the character P. There is a 
problem of inability to find a path although it exists indeed. Let us suppose a car is on 
the connection between the points 1 and 2 and tries again to come back to the point 1. In 
such a case the algorithm will stop although there is a solution in the form 
2→3→4→5→2→1 (principles of A* as well as its modifications are more detailed 
described in [20]). To prevent this problem the coding of the whole NG network was 
changed in such a way the path will not be searched by the points but by their 
connections [19]. In other words, neurons of the NG network will not represent 
communication points (crossings and curves) but connections between these points. In 
our case for Fig. 5 the solution will look like 23→34→45→52→21. 
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Figure 5. Description of the P-problem 

4. Setting up Learning Parameters and Experiments 
There are in total eight parameters whose setting up influences not only the learning 
process but also the entire quality of the resulting space description. In following we 
will summarize them and introduce some remarks concluded from experiments. Namely 
there are these parameters for GNG networks: 

• number of adaptation steps given by the time tmax, 

• maximum number of neurons (points) of the output layer N, 

• interval of inserting new points τ, 

• maximum age of a connection T, 

• learning parameters γS1 and γSi,  

• parameters for reduction of the quantization error α and β. 

By [7] the value for γS1 is chosen considerably smaller than 0,3 – in our case γS1 = 0,05 
and for γSi the value will be approximately one tenth, i.e. γSi = 0,006. Further, for our 
experiments values of remaining parameters were: T = 100, α = 0,5, β = 0,0005. 

The experiments were mainly focused on observing parameters tmax, N and τ because 
just these parameters influence most the quality of the created network and interact 
mutually. Combining their various values and comparing obtained results following 
outcomes can be confirmed: 

1. The optimum number of output neurons is approximately one hundredth of the 
number of training points. 

2. The number of adaptation steps should be from two up to three times bigger as the 
number of training points. 

The interval of inserting new points should enable inserting all points during the first 
2/3 of the adaptation (having enough time for deploying new points to a correct 
position), i.e.: 

 max2
.

3
t
N

τ ≈  (8) 
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During the experiments a roughly uniform deployment of training points was supposed. 
The bigger number of adaptation steps the more accurate the network but also the bigger 
computational efforts. Therefore, the proposed values for parameters express a 
compromise between descriptive precision and computational speed. Although the 
greatest influence on the position of a given neuron is caused by the initial step of 
inserting (6) but it will be influenced also by continuous adaptation of its position even 
if relating to the magnitudes of γS1 and γSi in a considerably smaller measure. Therefore, 
it is necessary to enable a multiple adaptation of each neuron and from this reason tmax 
needs to have high values as well as an inserted neuron needs to have possibility of 
moderate position correction at least during the last third of the entire adaptation time 
tmax. 

For needs of creating a GNG network describing the communication network of the city 
Košice a training set with 242 470 points was used and other parameters owned these 
values: tmax = 900 000, N = 2 000, τ = 300, T = 100, α = 0,5, β = 0,0005, γS1 = 0,05, γSi 
= 0,006. The experiments showed the network was able to learn with the same quality 
on various types of road networks regardless the form and density as seen in the Fig. 6. 

5. Conclusions 
The proposed combination of NG networks and exact graph algorithms offers very 
advantageous properties for navigation either as an auxiliary for drivers [17] or as a 
direct means for navigation of mobile robots with the ability incrementally to modify 
space description. The absence of any definite topology of connections in the output 
layer (in comparison to Kohonen networks) enables NG networks to model whatever 
area of arbitrary complexity without any limitations regarding various restrains, e.g. 
forms of roads and traffic rules in the case of communications. This approach enables 
including further mechanisms like automatic removing of connections in the case of 
one-way roads or merging several independently created networks describing 
neighbourhood areas. It is possible to create an overview network with a less detailed 
description (like maps with different scales) for purposes of approximate navigation 
[13], too. Since the concept of NG networks is general for spaces with arbitrary 
dimensions it is also possible to incorporate for instance height data. 

The advantage of this approach is based mainly on its two-stage processing. In the first 
stage a descriptive network is created although computationally demanding but 
necessary only ones, which will be later modified only occasionally using mentioned 
mechanisms. Anyway, also in this stage most of activities are automated (opposite to 
conventional approaches). In the second stage, which will be used many times, highly 
efficient algorithms are used for finding optimum paths whose time efforts do not 
exceed 3 seconds in the case of Košice. 

The descriptive form of NG networks for contour manifold and heterogeneous spaces 
offers further utilization possibilities. It would be probably very perspective to use such 
a numerical knowledge representation form for knowledge extraction into rules using 
fuzzy logic (because of its nonlinear matter [14]) and its learning (adaptation) 
approaches [5] to obtain symbolic form of knowledge, which is necessary for more 
complex control and decision tasks. 
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Figure 6. Description of the road network for urban part Košice – North 
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