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Abstract:  This experimental study focuses on a detection system at the seismic 
station level that should have a similar role to the detection algorithms 
based on the ratio STA/LTA. We tested two types of neural network: 
Multi-Layer Perceptrons and Support Vector Machines, trained in 
supervised mode. The universe of data consisted of 2903 patterns extracted 
from records of the PVAQ station, of the seismography network of the 
Institute of Meteorology of Portugal. The spectral characteristics of the 
records and its variation in time were reflected in the input patterns, 
consisting in a set of values of power spectral density in selected 
frequencies, extracted from a spectrogram calculated over a segment of 
record of pre-determined duration. The universe of data was divided, with 
about 60% for the training and the remainder reserved for testing and 
validation. To ensure that all patterns in the universe of data were within 
the range of variation of the training set, we used an algorithm to separate 
the universe of data by hyper-convex polyhedrons, determining in this 
manner a set of patterns that have a mandatory part of the training set. 
Additionally, an active learning strategy was conducted, by iteratively 
incorporating poorly classified cases in the training set. The best results, in 
terms of sensitivity and selectivity in the whole data ranged between 98% 
and 100%. These results compare very favorably with the ones obtained by 
the existing detection system, 50%. 
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1. Introduction 
There is a growing interest in seismology for increasing the speed and the reliability of 
the automatic processing of seismic data acquired by the monitoring system. The 
application of Artificial Neural Networks (ANN) in this field, and more specifically, the 
automatic detection of seismic events, has been tested for some years and is a promising 
path of current research. 

We propose a seismic detection system, to be implemented at the seismic station, using 
ANN. This system should be able to distinguish segments of seismic records containing 
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signal caused by local and regional events, from all other situations. The aim is to build 
a classifier that assigns one of two class periods of the seismic record of pre-determined 
fixed duration, Class 1, local and regional natural earthquakes, and class 2, all the other 
possibilities. 

In the last two decades several researchers worked in the field of automatic seismic 
detection with neural networks. Some of those studies are presented below. 

(Masotti et al., 2006) applied a Support Vector Machine (SVM) to classify volcanic 
tremor data at Etna volcano, Italy. Trained in a supervised way, the classifier should 
recognize patterns belonging to four classes; pre-eruptive, lava fountains, eruptive, and 
post-eruptive. 425 spectrogram based feature vectors were used for training. The system 
correctly classified 94.7 ± 2.4% of the data in validation.  

In (Abu-Elsoud et al., 2004) an automatic system is proposed to discriminate between 
local earthquakes and local explosions in the Suez Gulf area, Egypt. The system is 
ANN-based  and is composed of two modules; a feature extractor that quantifies the 
seismogram signatures using a Linear Prediction Code and a classifier to discriminate 
the seismic events. The data used is a set of 320 seismic events recorded by the 
Egyptian National Seismic Network; 142 records are explosions and 178 are local 
earthquakes. Validation results achieved 93.7% of correct classifications. 

To detect distant seismic events automatically, (Tiira, 1999), proposes a Multi-Layer 
Perceptron (MLP) trained with the Error-Back-Propagation algorithm. The entries in 
this network are instantaneous values of STA/LTA (see Section 2.2) calculated with 4 
different windows of STA, in 7 frequency bands. 193 distant seismic events were used 
in the training process. Comparing with the Murdock-Hutt detector (Murdock and Hutt, 
1983), this system detected 25% more events, and produced 50% less false alarms. 

(Dai and MacBeth, 1997) proposed a Back-Propagation Neural Network (BPNN) to 
identify P (Primary) and S (Secondary) arrivals (Udías, 2000) from three-component 
recordings of local earthquake data. The BPNN was trained by selecting trace segments 
of P and S waves and noise bursts, converted into an attribute space based on the 
Degree of Polarization (DOP). 1363 seismic records were used for training and 
validation. Compared with a manual analysis, the trained system can correctly identify 
between 76.6% and 82.3% of the P arrivals, and between 60.5% and 62.6% of the S 
arrivals. 

The detection of seismic events was the objective of the study presented in (Wang and 
Teng, 1995). Two ANN were trained in supervised mode with different types of inputs: 
In one case the ratio STA/LTA was used, the other used spectrogram as input feature. 
Experiments have shown that these systems performed better than those algorithms 
based on a threshold of the STA/LTA ratio. 

In this work we used data collected from the seismic station PVAQ1, located in 
Vaqueiros, Algarve, in southern Portugal.  

                                                           
1 In general, Portuguese seismic stations begin with a “P”, that stands for Portugal, followed by an 
abbreviation of the location name, in this case “VAQ” stands for Vaqueiros. 
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The structure of the paper is as follows. In section 2, the procedures used for data 
collection and feature extraction are described. The training methods used in the 
experiment are also indicated in this section. In section 3 the experiments are described 
and the results analyzed. Conclusions and future work are expressed in section 4. 

2. Data and Training Methods 

2.1. Input Data 

Non-stationary signals occur naturally in many real-world applications: Examples 
include speech, music, biomedical signals, radar, sonar and seismic waves. Time-
frequency representations such as the spectrograms are important tools for processing 
such time-varying signals. In this work, the spectrogram is used as the first stage of 
earthquake detection. 

The Power Spectrum Density (PSD) is estimated using periodogram averaging (Welch, 
1967). Only positive frequencies are taken into account (the so-called one-sided PSD). 
PSD values are slightly smoothed by taking the average of PSD values in a constant 
relative bandwidth of 1/10 of a decade. The procedure to achieve that smoothness was 
as follows: Let P(f) be the PSD values in some set of discrete frequencies F. Starting 
with the lowest frequency of F, (fmin), we created a sequence of frequencies separated by 
1/10 of a decade, 
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We then split F into disjoint subsets Dk, 

 { } 1: , , 1, 2,k k kD f f f f f F k+= ≤ ≤ ∈ = …  (2) 

each set Dk is associated with a frequency fk as defined above. The smoothed PSD, 
Ps(fk), is given by, 
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We have divided segments of 120 seconds into 5 non-overlapping intervals. For each 
one of them we computed the PSD. This is done with standard Matlab functions. We 
then picked the power at 6 frequencies 1, 2, 4, 8, 10 and 15 Hz. This means that 30 
different features will be used for the classifier. This was a constraint that we imposed, 
in order to limit the classifiers complexity. Fig. 1 illustrates a seismic-record and its 
spectrogram, highlighting the frequencies selected. 
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Figure 1. (A) 120 sec of seismic record (B) Spectrogram 

In most experiments, a Butterworth digital high-pass filter was applied to the signal 
previous to PSD computation. The cut-off frequency was 0.5 Hz and the order of the 
filter was 5. This procedure intended to remove low frequency content from the 
spectrum, since for local and regional seismic events those frequencies are out of the 
main bandwidth of interest. 

2.2. Target Data 

Seismic data, previously classified was collected from the PVAQ station of the seismic 
monitoring system of the Institute of Meteorology of Portugal (IM). Seismic data was 
classified by seismologists of the National Data Center (NDC) at IM. The seismic 
detector used at a station level is a standard STA/LTA ratio based detector (Stewart, 
1977). Fig. 2 outlines the operation of such a detector. 

 
Figure 2. Block diagram of a typical STA/LTA detector 

The input data is band-pass filtered to maximise sensitivity within a specific frequency 
band of interest, and to reject noise outside this band. Averages of the modulus of signal 
amplitude are computed over two user-defined time periods, a short time average (STA) 
and a long time average (LTA), and the ratio of the two, (STA/LTA), at each sample 
point is computed. If this ratio exceeds a user-defined threshold, then a trigger is 
declared, and the system remains in a triggered state until the ratio falls below the 
defined threshold. 
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These detectors based on the ratio STA/LTA at the seismic station show in general very 
modest performance, i.e., large numbers of non detected seismic events and several 
false alarms. However, a seismic network can drastically improve the overall 
performance considering clusters of stations. The likelihood of noise events occurring in 
a given time interval at various stations is very small, thus reducing the likelihood of 
making false alarms. In addition, an event that is not detected by a particular station is 
likely to be detected by other stations of the group, thereby increasing dramatically the 
ability of detection. However, the automatic system at the NDC is always supervised by 
seismologists. 

2.3. Collected Data 

From the year of 2007, 2903 examples were collected, 502 representing the positive 
class (classified as earthquake by the seismologists at NDC, and where seismic phases 
were identified in the PVAQ records), and the other 2401 classified as non-seism. In the 
former case, the station detection system miss-classified 50% of the events. In the latter 
class, 50% of the examples were randomly selected representing events that triggered 
the detection system, but that were not classified as seismic by the NDC, while the rest 
of the examples were selected randomly, neither coinciding with events detected by the 
system nor classified as earthquakes by the NDC. This way, the station automatic 
detected system achieved values of 50% of Sensitivity and Specificity (measures 
introduced latter) in the data collected. 

2.4. Training Methods 

In this work, MLPs were used as classifiers. We shall briefly describe here the training 
method employed. For more information, the reader is referred to, for instance (Ruano 
et al., 2005). 

First of all we assign to each positive example the value of +1, and to each negative 
example, the value of -1. Input data is scaled and the classifier nonlinear parameters are 
initialized with a stochastic procedure which does not exacerbate the condition number 
of the Jacobean matrix of the model. 

Parameter estimation is achieved by applying the Levenberg-Marquardt algorithm 
(Ruano et al., 1992) for the minimization of a criterion that exploits the separability of 
the classifier parameters, as linear parameters are used in the output layer (Ruano et al., 
1991). This process is applied to the training data, and terminates whether a local 
minimum is found, or the performance in another set, denoted here as a test set, 
deteriorates. This is the well-known method of early stopping (Haykin, 1999). 

As indirectly, the test set is used in the determination of the classifiers, their 
performance is assessed in a third data set, denoted here as the validation set. 

3. Results 

3.1. First Experiment 

The first experiment was conducted by assigning, randomly, 60% of the data to the 
training set, 20% to the test set, and 20% to the validation set. It was only ensured that a 
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similar percentage of positive cases was assigned to each data set. The training set 
consisted of 1744 examples, with 307 positive cases; the test set had 582 examples, with 
99 positive cases; the validation set consisted of 577 events, with 96 positive cases. 

In this first experiment, 20 different topologies of MLPs were tried, each one with 20 
different parameters initializations. Moreover, the use (or not) of the filter described 
above was tested, resulting in 800 different classifiers. 

The results are presented in terms of the Sensitivity, or Recall (R) criterion, defined as: 

 TPR
TP FN

=
+

, (4) 

and in terms of Specificity (S) criterion, defined as… 

 TNS
FP TN

=
+

, (5) 

where TP, TN, FP and FN denote the number of True Positives, True Negatives, False 
Positives and False Negatives, respectively. Moreover, these criteria are applied to the 
training, test and validation sets, separately, and to all the data. As the classification is 
casted as a multi-objective problem, we do not have a single optimum; instead a set of 
Non-Dominated (ND) solutions is obtained, where the elements have the property that 
no one is better (larger in this case) in all objectives than the other solutions belonging 
to the set. The following tables show the ND solutions found, for the three data sets, 
individually considered. 

A line in italic indicates that the same ND classifier is present in the training and in the 
validation sets, while an underlined line indicates that a common ND classifier is 
obtained in the test and in the validation sets. Please note that as 20 different 
initializations were conducted for the same topology, equal entries in the topology 
column is not an indication that the same classifier is used. A mark in the column 
labelled as F indicates if filtering of the input data has been applied. The columns 
labelled as R(All) and S(All) show the Recall and the Specificity values computed for 
the whole data (the union of the training, test and validation data sets). The topology 
column shows the number of neurons in the first and the second hidden layers. 

Table 1. Training set 

Topology F R S R(All) S(All) 
[7 2]  91.86 99.23 92.43 99.25 
[5 7]  96.74 96.66 96.81 97.17 
[4 16]  96.09 97.56 94.82 97.88 
[5 11]  93.49 98.96 93.43 98.96 
[7 2]  94.79 98.12 95.62 98.25 
[6 5]  94.46 98.75 94.62 98.88 
[6 3] * 92.18 99.10 93.23 99.13 
[5 7] * 95.44 98.05 95.82 98.50 
[7 2] * 96.42 97.49 96.61 98.00 
[4 15] * 92.51 99.03 93.23 99.04 
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Table 2.  Test set 

Topology F R S  R(All) S(All) 
[7 2]  96.97 99.38 94.22 98.71 
[5 8]  98.99 98.96 94.82 97.33 
[4 19]  95.96 99.79 93.82 98.04 
[6 2]  94.95 100.00 94.82 98.79 

Table 3.  Validation set 

Topology F R S R(All) S(All) 
[6 2]  97.92 99.17 94.82 98.79 
[7 2]  98.96 98.13 95.62 98.25 
[6 3] * 95.83 99.38 94.82 98.96 
[7 2] * 90.63 99.79 90.44 98.67 

If we perform the same analysis for the three data sets together (i.e., considering as 
criteria the Selectivity and the Specificity for the training, the test and the validation 
sets, and subsequently determining the ND solutions), we obtain the union of the ND 
solutions for the three data sets considered separately, plus a significant number of 
additional Pareto solutions. In the total, 51 ND solutions were obtained. If we select the 
classifier by the total number of misclassifications (both positive and negative) in the 
whole data, 3 models achieve the smallest number, 51, in the full 2903 examples. One 
of the three solutions is shown in the 3rd line of Table 3, and the other two belong to 
additional ND solutions. 

The results can also be presented as a ROC (Receiver Operating Characteristics) curve 
(Swets, 1988). The next three figures present these results, where, in every case, the ND 
solutions obtained considering the corresponding data set are shown as a red circle, and 
the ND solutions, considered the 6 criteria, are shown as blue diamonds. 
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Figure 3. ROC for the training set 



Vol. 2. No. 2. 2009 Acta Technica Jaurinensis 

166 

0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Specificity

S
en

si
tiv

ity

Test

solutions
ND Sol (Training)
ND Sol (All)

 
Figure 4. ROC for the test set 
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Figure 5. ROC for the validation set 

We were therefore able to obtain classifiers with Recall and Specificity values above 
95% (compared with the 50% values obtained by the existing detection system), and 
with a total number of misclassifications in the order of 50, compared with 1450, 
achieved by the existing system. 

These results are also able to highlight that the use or not of the filter did not produce 
any significant difference. Filtered data will be used from now on. 

3.2. Support Vector Machines 

Another set of experiences regarding different partitioning of data between the training, 
test and validation sets was conducted. First of all, an approximate convex hull of the 
input data has been obtained, and the examples that lie in the hull were integrated in the 
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training set. In order to maintain an approximate distribution of 60%, 20% and 20% of 
the data to the three sets, examples of the original training set were moved to the other 
two sets. With this data partitioning, a Support Vector Machine (SVM) classifier, with a 
Gaussian kernel, was experimented. The implementation described in (Frieß et al., 
1998) was used. 

In this case the examples in the test and validation set were used as a single validation 
set. With a spread value of 0.237, the following results were obtained: 

Table 4. SVM performance 

SVs R S R(All) S(All) 
583 100.00 100.00 99.62 99.35 

Subsquently, a form of active learning (Cohn et al., 1994) was applied. The examples 
badly classified were incorporated in the training set, and randomly removed the same 
number of examples to the validation set, provided they were not in the approximate 
convex hull previously determined. This procedure was repeated three times. The 
results are presented in Table 5. 

Table 5. SVM performance with active learning 

SVs R S R(All) S(All) 
609 100.00 100.00 99.72 99.66 
626 100.00 100.00 99.76 99.72 
640 100.00 100.00 100.00 99.93 

This represents an almost perfect performance (only 2 misclassifications in the whole 
data). The major problem is the large complexity of the classifier, consisting of 640 
support vectors. We therefore tried, with this new partitioning of data, to improve the 
performance of the MLP classifiers. 

3.3. Further experiments with MLPs 

We used 20 different topologies, each one with 10 different initializations. The non-
dominated solutions obtained are shown below. 

Table 6. Training set 

Topology R S R(All) S(All) 
[6 4 ] 97.48 99.30 96.61 99.50 
[6 2] 99.37 99.09 96.81 98.82 
[5 11] 96.21 99.44 92.23 99.29 
[5 12] 95.27 99.79 92.43 98.83 

Table 7. Test set 

Topology R S R(All) S(All) 
[4 20] 98.90 99.38 97.21 98.46 
[5 8] 100.00 98.97 98.41 97.83 
[6 4] 94.51 99.79 96.61 99.50 
[4 19] 96.70 95.59 86.65 96.50 
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Table 8. Validation set 

Topology R  S R(All) S(All) 
[6 2] 100.00 99.80 97.81 98.83 

A line in bold indicates that the same ND classifier is obtained, considering the training 
set and the test set. The number of ND solution achieved, considering the three data 
sets, is 32. The best solution, in terms of the total number of miss-classifications, has a 
topology of [5 9], and it is not present in tables 6-8. 
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Figure 6. ROC for the training set 
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Figure 7. ROC for the test set 
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Figure 8. ROC for the validation set 

We were able, with just a different data partitioning, to reduce the number of miss-
classifications from 51 (please see Section 3.1) down to 29. This classifier presents a 
complexity, in terms of the number of parameters, of 219, compared with the solution 
obtained in Section 3.2, with 640 support vectors. 

Further experiments were conducted, varying the decision threshold of the classifiers. 
No improvements, however, were obtained. The following figures show the ROC 
curves, for the training, test and validation sets. 

Conclusions 

With the same data that produced 50% Sensitivity and Selectivity values in an existing 
detection system, based on the LTA/STA ratio, we were able to obtain, in a first step, 
values greater than 95% for the two criteria. Using an active learning technique, we 
were able to improve the performance of our MLP classifiers to 98%. An SVM 
classifier was able to achieve almost perfect classification, albeit at the expense of a 
large complexity. 

Although the results are encouraging, the work described in this paper must be 
considered as preliminary. At present the performance of the neural classifiers is being 
assessed in the whole 2007 record of the station employed. The analysis of the results 
will enable to construct a better off-line classifier. Then, our attention will be focused in 
on-line learning methods, so that the classifier learns with its on-line performance. 
Additional features can also be considered and a search for the best to use, together with 
the classifier topology, can be conducted by meta-heuristics. Finally, the use of data 
from different stations will be considered. 
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